Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Competition-Aware Decision-Making Approach for Mobile Robots in Racing Scenarios (2404.00520v1)

Published 31 Mar 2024 in cs.RO and math.OC

Abstract: This paper presents a game-theoretic strategy for racing, where the autonomous ego agent seeks to block a racing opponent that aims to overtake the ego agent. After a library of trajectory candidates and an associated reward matrix are constructed, the optimal trajectory in terms of maximizing the cumulative reward over the planning horizon is determined based on the level-K reasoning framework. In particular, the level of the opponent is estimated online according to its behavior over a past window and is then used to determine the trajectory for the ego agent. Taking into account that the opponent may change its level and strategy during the decision process of the ego agent, we introduce a trajectory mixing strategy that blends the level-K optimal trajectory with a fail-safe trajectory. The overall algorithm was tested and evaluated in various simulated racing scenarios, which also includes human-in-the-loop experiments. Comparative analysis against the conventional level-K framework demonstrates the superiority of our proposed approach in terms of overtake-blocking success rates.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com