Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

SA-LSPL:Sequence-Aware Long- and Short- Term Preference Learning for next POI recommendation (2404.00367v1)

Published 30 Mar 2024 in cs.CY

Abstract: The next Point of Interest (POI) recommendation aims to recommend the next POI for users at a specific time. As users' check-in records can be viewed as a long sequence, methods based on Recurrent Neural Networks (RNNs) have recently shown good applicability to this task. However, existing methods often struggle to fully explore the spatio-temporal correlations and dependencies at the sequence level, and don't take full consideration for various factors influencing users' preferences. To address these issues, we propose a novel approach called Sequence-Aware Long- and Short-Term Preference Learning (SA-LSPL) for next-POI recommendation. We combine various information features to effectively model users' long-term preferences. Specifically, our proposed model uses a multi-modal embedding module to embed diverse check-in details, taking into account both user's personalized preferences and social influences comprehensively. Additionally, we consider explicit spatio-temporal correlations at the sequence level and implicit sequence dependencies. Furthermore, SA-LSPL learns the spatio-temporal correlations of consecutive and non-consecutive visits in the current check-in sequence, as well as transition dependencies between categories, providing a comprehensive capture of user's short-term preferences. Extensive experiments on two real-world datasets demonstrate the superiority of SA-LSPL over state-of-the-art baseline methods.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.