CLIP-driven Outliers Synthesis for few-shot OOD detection (2404.00323v1)
Abstract: Few-shot OOD detection focuses on recognizing out-of-distribution (OOD) images that belong to classes unseen during training, with the use of only a small number of labeled in-distribution (ID) images. Up to now, a mainstream strategy is based on large-scale vision-LLMs, such as CLIP. However, these methods overlook a crucial issue: the lack of reliable OOD supervision information, which can lead to biased boundaries between in-distribution (ID) and OOD. To tackle this problem, we propose CLIP-driven Outliers Synthesis~(CLIP-OS). Firstly, CLIP-OS enhances patch-level features' perception by newly proposed patch uniform convolution, and adaptively obtains the proportion of ID-relevant information by employing CLIP-surgery-discrepancy, thus achieving separation between ID-relevant and ID-irrelevant. Next, CLIP-OS synthesizes reliable OOD data by mixing up ID-relevant features from different classes to provide OOD supervision information. Afterward, CLIP-OS leverages synthetic OOD samples by unknown-aware prompt learning to enhance the separability of ID and OOD. Extensive experiments across multiple benchmarks demonstrate that CLIP-OS achieves superior few-shot OOD detection capability.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.