Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Simple Yet Effective Approach for Diversified Session-Based Recommendation (2404.00261v1)

Published 30 Mar 2024 in cs.IR and cs.AI

Abstract: Session-based recommender systems (SBRSs) have become extremely popular in view of the core capability of capturing short-term and dynamic user preferences. However, most SBRSs primarily maximize recommendation accuracy but ignore user minor preferences, thus leading to filter bubbles in the long run. Only a handful of works, being devoted to improving diversity, depend on unique model designs and calibrated loss functions, which cannot be easily adapted to existing accuracy-oriented SBRSs. It is thus worthwhile to come up with a simple yet effective design that can be used as a plugin to facilitate existing SBRSs on generating a more diversified list in the meantime preserving the recommendation accuracy. In this case, we propose an end-to-end framework applied for every existing representative (accuracy-oriented) SBRS, called diversified category-aware attentive SBRS (DCA-SBRS), to boost the performance on recommendation diversity. It consists of two novel designs: a model-agnostic diversity-oriented loss function, and a non-invasive category-aware attention mechanism. Extensive experiments on three datasets showcase that our framework helps existing SBRSs achieve extraordinary performance in terms of recommendation diversity and comprehensive performance, without significantly deteriorating recommendation accuracy compared to state-of-the-art accuracy-oriented SBRSs.

Summary

We haven't generated a summary for this paper yet.