Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Classification and Clustering of Sentence-Level Embeddings of Scientific Articles Generated by Contrastive Learning (2404.00224v1)

Published 30 Mar 2024 in cs.CL

Abstract: Scientific articles are long text documents organized into sections, each describing aspects of the research. Analyzing scientific production has become progressively challenging due to the increase in the number of available articles. Within this scenario, our approach consisted of fine-tuning transformer LLMs to generate sentence-level embeddings from scientific articles, considering the following labels: background, objective, methods, results, and conclusion. We trained our models on three datasets with contrastive learning. Two datasets are from the article's abstracts in the computer science and medical domains. Also, we introduce PMC-Sents-FULL, a novel dataset of sentences extracted from the full texts of medical articles. We compare the fine-tuned and baseline models in clustering and classification tasks to evaluate our approach. On average, clustering agreement measures values were five times higher. For the classification measures, in the best-case scenario, we had an average improvement in F1-micro of 30.73\%. Results show that fine-tuning sentence transformers with contrastive learning and using the generated embeddings in downstream tasks is a feasible approach to sentence classification in scientific articles. Our experiment codes are available on GitHub.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.