Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast OMP for Exact Recovery and Sparse Approximation (2404.00146v1)

Published 29 Mar 2024 in cs.CV and math.OC

Abstract: Orthogonal Matching Pursuit (OMP) has been a powerful method in sparse signal recovery and approximation. However OMP suffers computational issue when the signal has large number of non-zeros. This paper advances OMP in two fronts: it offers a fast algorithm for the orthogonal projection of the input signal at each iteration, and a new selection criterion for making the greedy choice, which reduces the number of iterations it takes to recover the signal. The proposed modifications to OMP directly reduce the computational complexity. Experiment results show significant improvement over the classical OMP in computation time. The paper also provided a sufficient condition for exact recovery under the new greedy choice criterion. For general signals that may not have sparse representations, the paper provides a bound for the approximation error. The approximation error is at the same order as OMP but is obtained within fewer iterations and less time.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com