Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Backdoor Approach with Inverted Labels Using Dirty Label-Flipping Attacks (2404.00076v2)

Published 29 Mar 2024 in cs.CR, cs.AI, cs.CL, cs.LG, and eess.SP

Abstract: Audio-based machine learning systems frequently use public or third-party data, which might be inaccurate. This exposes deep neural network (DNN) models trained on such data to potential data poisoning attacks. In this type of assault, attackers can train the DNN model using poisoned data, potentially degrading its performance. Another type of data poisoning attack that is extremely relevant to our investigation is label flipping, in which the attacker manipulates the labels for a subset of data. It has been demonstrated that these assaults may drastically reduce system performance, even for attackers with minimal abilities. In this study, we propose a backdoor attack named 'DirtyFlipping', which uses dirty label techniques, "label-on-label", to input triggers (clapping) in the selected data patterns associated with the target class, thereby enabling a stealthy backdoor.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com