Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 136 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Optimal Communication for Classic Functions in the Coordinator Model and Beyond (2403.20307v1)

Published 29 Mar 2024 in cs.DS

Abstract: In the coordinator model of communication with $s$ servers, given an arbitrary non-negative function $f$, we study the problem of approximating the sum $\sum_{i \in [n]}f(x_i)$ up to a $1 \pm \varepsilon$ factor. Here the vector $x \in Rn$ is defined to be $x = x(1) + \cdots + x(s)$, where $x(j) \ge 0$ denotes the non-negative vector held by the $j$-th server. A special case of the problem is when $f(x) = xk$ which corresponds to the well-studied problem of $F_k$ moment estimation in the distributed communication model. We introduce a new parameter $c_f[s]$ which captures the communication complexity of approximating $\sum_{i\in [n]} f(x_i)$ and for a broad class of functions $f$ which includes $f(x) = xk$ for $k \ge 2$ and other robust functions such as the Huber loss function, we give a two round protocol that uses total communication $c_f[s]/\varepsilon2$ bits, up to polylogarithmic factors. For this broad class of functions, our result improves upon the communication bounds achieved by Kannan, Vempala, and Woodruff (COLT 2014) and Woodruff and Zhang (STOC 2012), obtaining the optimal communication up to polylogarithmic factors in the minimum number of rounds. We show that our protocol can also be used for approximating higher-order correlations. Apart from the coordinator model, algorithms for other graph topologies in which each node is a server have been extensively studied. We argue that directly lifting protocols leads to inefficient algorithms. Hence, a natural question is the problems that can be efficiently solved in general graph topologies. We give communication efficient protocols in the so-called personalized CONGEST model for solving linear regression and low rank approximation by designing composable sketches. Our sketch construction may be of independent interest and can implement any importance sampling procedure that has a monotonicity property.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.