Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PACC: A Passive-Arm Approach for High-Payload Collaborative Carrying with Quadruped Robots Using Model Predictive Control (2403.19862v2)

Published 28 Mar 2024 in cs.RO

Abstract: In this paper, we introduce the concept of using passive arm structures with intrinsic impedance for robot-robot and human-robot collaborative carrying with quadruped robots. The concept is meant for a leader-follower task and takes a minimalist approach that focuses on exploiting the robots' payload capabilities and reducing energy consumption, without compromising the robot locomotion capabilities. We introduce a preliminary arm mechanical design and describe how to use its joint displacements to guide the robot's motion. To control the robot's locomotion, we propose a decentralized Model Predictive Controller that incorporates an approximation of the arm dynamics and the estimation of the external forces from the collaborative carrying. We validate the overall system experimentally by performing both robot-robot and human-robot collaborative carrying on a stair-like obstacle and on rough terrain.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. N. Kashiri, L. Baccelliere, L. Muratore, A. Laurenzi, Z. Ren, E. M. Hoffman, M. Kamedula, G. F. Rigano, J. Malzahn, S. Cordasco, P. Guria, A. Margan, and N. G. Tsagarakis, “Centauro: A hybrid locomotion and high power resilient manipulation platform,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1595–1602, 2019.
  2. C. D. Bellicoso, K. Krämer, M. Stäuble, D. Sako, F. Jenelten, M. Bjelonic, and M. Hutter, “Alma - articulated locomotion and manipulation for a torque-controllable robot,” in 2019 International Conf. on Robotics and Automation (ICRA), 2019, pp. 8477–8483.
  3. B. U. Rehman, M. Focchi, J. Lee, H. Dallali, D. G. Caldwell, and C. Semini, “Towards a multi-legged mobile manipulator,” in IEEE Int. Conf. on Robotics and Automation (ICRA).   IEEE, May 2016.
  4. R. Parosi, M. Risiglione, D. G. Caldwell, C. Semini, and V. Barasuol, “Kinematically-decoupled impedance control for fast object visual servoing and grasping on quadruped manipulators,” in IEEE/RSJ International Conf. on Intelligent Robots and Systems (IROS), 2023.
  5. J. D. Gamba, P. Arpenti, F. Ruggiero, and C. Semini, “An effective robotic end-effector engagement approach for automated grapevine pruning on a quadrupedal manipulator,” in I-RIM Conference, 2023.
  6. E. Arcari, M. V. Minniti, A. Scampicchio, A. Carron, F. Farshidian, M. Hutter, and M. N. Zeilinger, “Bayesian multi-task learning mpc for robotic mobile manipulation,” IEEE Robotics and Automation Letters, vol. 8, no. 6, pp. 3222–3229, 2023.
  7. S. C. Walpole, D. Prieto-Merino, P. Edwards, J. Cleland, G. Stevens, and I. Roberts, “The weight of nations: an estimation of adult human biomass,” BMC Public Health, vol. 12, pp. 1471–2458, 2012.
  8. M. V. Minniti, R. Grandia, F. Farshidian, and M. Hutter, “Adaptive clf-mpc with application to quadrupedal robots,” IEEE Robotics and Automation Letters, vol. 7, no. 1, pp. 565–572, 2022.
  9. R. T. Fawcett, L. Amanzadeh, J. Kim, A. D. Ames, and K. A. Hamed, “Distributed data-driven predictive control for multi-agent collaborative legged locomotion,” in 2023 IEEE International Conference on Robotics and Automation (ICRA), 2023, pp. 9924–9930.
  10. C. Yang, G. N. Sue, Z. Li, L. Yang, H. Shen, Y. Chi, A. Rai, J. Zeng, and K. Sreenath, “Collaborative navigation and manipulation of a cable-towed load by multiple quadrupedal robots,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 10 041–10 048, 2022.
  11. F. D. Vincenti and S. Coros, “Centralized model predictive control for collaborative loco-manipulation,” in Robotics: Science and Systems XIX, Daegu, Republic of Korea, July 10-14, 2023. [Online]. Available: https://doi.org/10.15607/RSS.2023.XIX.050
  12. R. Fawcett, A. Ames, and K. Akbari Hamed, “Distributed planning of collaborative locomotion: A physics-based and data-driven approach,” IEEE Access, vol. PP, pp. 1–1, 01 2023.
  13. J. Kim, R. T. Fawcett, V. R. Kamidi, A. D. Ames, and K. A. Hamed, “Layered control for cooperative locomotion of two quadrupedal robots: Centralized and distributed approaches,” IEEE Transactions on Robotics, vol. 39, no. 6, pp. 4728–4748, 2023.
  14. D. Sirintuna, A. Giammarino, and A. Ajoudani, “An object deformation-agnostic framework for human–robot collaborative transportation,” IEEE Transactions on Automation Science and Engineering, pp. 1–14, 2023.
  15. X. Yu, W. He, Q. Li, Y. Li, and B. Li, “Human-robot co-carrying using visual and force sensing,” IEEE Transactions on Industrial Electronics, vol. 68, no. 9, pp. 8657–8666, 2021.
  16. Y. Ji, B. Zhang, and K. Sreenath, “Reinforcement learning for collaborative quadrupedal manipulation of a payload over challenging terrain,” in 2021 IEEE 17th International Conference on Automation Science and Engineering (CASE), 2021, pp. 899–904.
  17. J. Kim, “Collaborative locomotion of quadrupedal robots: From centralized predictive control to distributed control,” Ph.D. dissertation, Virginia Tech, 2022.
  18. M. Sombolestan and Q. Nguyen, “Hierarchical adaptive control for collaborative manipulation of a rigid object by quadrupedal robots,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023, pp. 2752–2759.
  19. D. J. Agravante, A. Cherubini, A. Sherikov, P.-B. Wieber, and A. Kheddar, “Human-humanoid collaborative carrying,” IEEE Transactions on Robotics, vol. 35, no. 4, pp. 833–846, 2019.
  20. V. Barasuol, J. Buchli, C. Semini, M. Frigerio, E. R. De Pieri, and D. G. Caldwell, “A reactive controller framework for quadrupedal locomotion on challenging terrain,” in 2021 IEEE International Conference on Robotics and Automation (ICRA), 2013, pp. 2554–2561.
  21. N. Rathod, A. Bratta, M. Focchi, M. Zanon, O. Villarreal, C. Semini, and A. Bemporad, “Model predictive control with environment adaptation for legged locomotion,” IEEE Access, vol. 9, pp. 145 710–145 727, 2021.
  22. R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. van Duijkeren, A. Zanelli, B. Novoselnik, T. Albin, R. Quirynen, and M. Diehl, “acados – a modular open-source framework for fast embedded optimal control,” Mathematical Programming Computation, 2021.
  23. G. Frison and M. Diehl, “HPIPM: a high-performance quadratic programming framework for model predictive control,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 6563–6569, 2020, 21st IFAC World Congress.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Giulio Turrisi (14 papers)
  2. Lucas Schulze (2 papers)
  3. Vivian S. Medeiros (1 paper)
  4. Claudio Semini (56 papers)
  5. Victor Barasuol (20 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Youtube Logo Streamline Icon: https://streamlinehq.com