Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Collaborative Interactive Evolution of Art in the Latent Space of Deep Generative Models (2403.19620v1)

Published 28 Mar 2024 in cs.NE, cs.AI, cs.CV, cs.HC, and cs.LG

Abstract: Generative Adversarial Networks (GANs) have shown great success in generating high quality images and are thus used as one of the main approaches to generate art images. However, usually the image generation process involves sampling from the latent space of the learned art representations, allowing little control over the output. In this work, we first employ GANs that are trained to produce creative images using an architecture known as Creative Adversarial Networks (CANs), then, we employ an evolutionary approach to navigate within the latent space of the models to discover images. We use automatic aesthetic and collaborative interactive human evaluation metrics to assess the generated images. In the human interactive evaluation case, we propose a collaborative evaluation based on the assessments of several participants. Furthermore, we also experiment with an intelligent mutation operator that aims to improve the quality of the images through local search based on an aesthetic measure. We evaluate the effectiveness of this approach by comparing the results produced by the automatic and collaborative interactive evolution. The results show that the proposed approach can generate highly attractive art images when the evolution is guided by collaborative human feedback.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: