Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Quantum Realization of the Finite Element Method (2403.19512v3)

Published 28 Mar 2024 in quant-ph, cs.NA, math.NA, and cs.DS

Abstract: This paper presents a quantum algorithm for the solution of prototypical second-order linear elliptic partial differential equations discretized by $d$-linear finite elements on Cartesian grids of a bounded $d$-dimensional domain. An essential step in the construction is a BPX preconditioner, which transforms the linear system into a sufficiently well-conditioned one, making it amenable to quantum computation. We provide a constructive proof demonstrating that, for any fixed dimension, our quantum algorithm can compute suitable functionals of the solution to a given tolerance $\mathtt{tol}$ with an optimal complexity of order $\mathtt{tol}{-1}$ up to logarithmic terms, significantly improving over existing approaches. Notably, this approach does not rely on regularity of the solution and achieves quantum advantage over classical solvers in two dimensions, whereas prior quantum methods required at least four dimensions for asymptotic benefits. We further detail the design and implementation of a quantum circuit capable of executing our algorithm, present simulator results, and report numerical experiments on current quantum hardware, confirming the feasibility of preconditioned finite element methods for near-term quantum computing.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com