Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

MFORT-QA: Multi-hop Few-shot Open Rich Table Question Answering (2403.19116v1)

Published 28 Mar 2024 in cs.CL and cs.AI

Abstract: In today's fast-paced industry, professionals face the challenge of summarizing a large number of documents and extracting vital information from them on a daily basis. These metrics are frequently hidden away in tables and/or their nested hyperlinks. To address this challenge, the approach of Table Question Answering (QA) has been developed to extract the relevant information. However, traditional Table QA training tasks that provide a table and an answer(s) from a gold cell coordinate(s) for a question may not always ensure extracting the accurate answer(s). Recent advancements in LLMs have opened up new possibilities for extracting information from tabular data using prompts. In this paper, we introduce the Multi-hop Few-shot Open Rich Table QA (MFORT-QA) approach, which consists of two major steps. The first step involves Few-Shot Learning (FSL), where relevant tables and associated contexts of hyperlinks are retrieved based on a given question. The retrieved content is then used to construct few-shot prompts as inputs to an LLM, such as ChatGPT. To tackle the challenge of answering complex questions, the second step leverages Chain-of-thought (CoT) prompting to decompose the complex question into a sequential chain of questions and reasoning thoughts in a multi-hop manner. Retrieval-Augmented Generation (RAG) enhances this process by retrieving relevant tables and contexts of hyperlinks that are relevant to the resulting reasoning thoughts and questions. These additional contexts are then used to supplement the prompt used in the first step, resulting in more accurate answers from an LLM. Empirical results from OTT-QA demonstrate that our abstractive QA approach significantly improves the accuracy of extractive Table QA methods.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube