Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Synthetic Medical Imaging Generation with Generative Adversarial Networks For Plain Radiographs (2403.19107v1)

Published 28 Mar 2024 in cs.CV and cs.LG

Abstract: In medical imaging, access to data is commonly limited due to patient privacy restrictions and the issue that it can be difficult to acquire enough data in the case of rare diseases.[1] The purpose of this investigation was to develop a reusable open-source synthetic image generation pipeline, the GAN Image Synthesis Tool (GIST), that is easy to use as well as easy to deploy. The pipeline helps to improve and standardize AI algorithms in the digital health space by generating high quality synthetic image data that is not linked to specific patients. Its image generation capabilities include the ability to generate imaging of pathologies or injuries with low incidence rates. This improvement of digital health AI algorithms could improve diagnostic accuracy, aid in patient care, decrease medicolegal claims, and ultimately decrease the overall cost of healthcare. The pipeline builds on existing Generative Adversarial Networks (GANs) algorithms, and preprocessing and evaluation steps were included for completeness. For this work, we focused on ensuring the pipeline supports radiography, with a focus on synthetic knee and elbow x-ray images. In designing the pipeline, we evaluated the performance of current GAN architectures, studying the performance on available x-ray data. We show that the pipeline is capable of generating high quality and clinically relevant images based on a lay person's evaluation and the Fr\'echet Inception Distance (FID) metric.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com