Papers
Topics
Authors
Recent
2000 character limit reached

Semi-Supervised Learning for Deep Causal Generative Models

Published 27 Mar 2024 in cs.LG, cs.AI, cs.CV, and stat.ML | (2403.18717v2)

Abstract: Developing models that are capable of answering questions of the form "How would x change if y had been z?'" is fundamental to advancing medical image analysis. Training causal generative models that address such counterfactual questions, though, currently requires that all relevant variables have been observed and that the corresponding labels are available in the training data. However, clinical data may not have complete records for all patients and state of the art causal generative models are unable to take full advantage of this. We thus develop, for the first time, a semi-supervised deep causal generative model that exploits the causal relationships between variables to maximise the use of all available data. We explore this in the setting where each sample is either fully labelled or fully unlabelled, as well as the more clinically realistic case of having different labels missing for each sample. We leverage techniques from causal inference to infer missing values and subsequently generate realistic counterfactuals, even for samples with incomplete labels.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 4 tweets with 59 likes about this paper.