Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Non-Linear Inference Time Intervention: Improving LLM Truthfulness (2403.18680v2)

Published 27 Mar 2024 in cs.CL and cs.LG

Abstract: In this work, we explore LLM's internal representation space to identify attention heads that contain the most truthful and accurate information. We further developed the Inference Time Intervention (ITI) framework, which lets bias LLM without the need for fine-tuning. The improvement manifests in introducing a non-linear multi-token probing and multi-token intervention: Non-Linear ITI (NL-ITI), which significantly enhances performance on evaluation benchmarks. NL-ITI is tested on diverse multiple-choice datasets, including TruthfulQA, on which we report over 16% relative MC1 (accuracy of model pointing to the correct answer) improvement with respect to the baseline ITI results. Moreover, we achieved a 10% relative improvement over the recently released Truth Forest (TrFf) method that also focused on ITI improvement.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.