Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Novel Behavior-Based Recommendation System for E-commerce (2403.18536v1)

Published 27 Mar 2024 in cs.IR, cs.AI, and cs.HC

Abstract: The majority of existing recommender systems rely on user ratings, which are limited by the lack of user collaboration and the sparsity problem. To address these issues, this study proposes a behavior-based recommender system that leverages customers' natural behaviors, such as browsing and clicking, on e-commerce platforms. The proposed recommendation system involves clustering active customers, determining neighborhoods, collecting similar users, calculating product reputation based on similar users, and recommending high-reputation products. To overcome the complexity of customer behaviors and traditional clustering methods, an unsupervised clustering approach based on product categories is developed to enhance the recommendation methodology. This study makes notable contributions in several aspects. Firstly, a groundbreaking behavior-based recommendation methodology is developed, incorporating customer behavior to generate accurate and tailored recommendations leading to improved customer satisfaction and engagement. Secondly, an original unsupervised clustering method, focusing on product categories, enables more precise clustering and facilitates accurate recommendations. Finally, an approach to determine neighborhoods for active customers within clusters is established, ensuring grouping of customers with similar behavioral patterns to enhance recommendation accuracy and relevance. The proposed recommendation methodology and clustering method contribute to improved recommendation performance, offering valuable insights for researchers and practitioners in the field of e-commerce recommendation systems. Additionally, the proposed method outperforms benchmark methods in experiments conducted using a behavior dataset from the well-known e-commerce site Alibaba.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube