Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

HEMIT: H&E to Multiplex-immunohistochemistry Image Translation with Dual-Branch Pix2pix Generator (2403.18501v2)

Published 27 Mar 2024 in eess.IV and cs.CV

Abstract: Computational analysis of multiplexed immunofluorescence histology data is emerging as an important method for understanding the tumour micro-environment in cancer. This work presents HEMIT, a dataset designed for translating Hematoxylin and Eosin (H&E) sections to multiplex-immunohistochemistry (mIHC) images, featuring DAPI, CD3, and panCK markers. Distinctively, HEMIT's mIHC images are multi-component and cellular-level aligned with H&E, enriching supervised stain translation tasks. To our knowledge, HEMIT is the first publicly available cellular-level aligned dataset that enables H&E to multi-target mIHC image translation. This dataset provides the computer vision community with a valuable resource to develop novel computational methods which have the potential to gain new insights from H&E slide archives. We also propose a new dual-branch generator architecture, using residual Convolutional Neural Networks (CNNs) and Swin Transformers which achieves better translation outcomes than other popular algorithms. When evaluated on HEMIT, it outperforms pix2pixHD, pix2pix, U-Net, and ResNet, achieving the highest overall score on key metrics including the Structural Similarity Index Measure (SSIM), Pearson correlation score (R), and Peak signal-to-noise Ratio (PSNR). Additionally, downstream analysis has been used to further validate the quality of the generated mIHC images. These results set a new benchmark in the field of stain translation tasks.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.