Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Constructive Method for Designing Safe Multirate Controllers for Differentially-Flat Systems (2403.18015v1)

Published 26 Mar 2024 in cs.SY, cs.RO, and eess.SY

Abstract: We present a multi-rate control architecture that leverages fundamental properties of differential flatness to synthesize controllers for safety-critical nonlinear dynamical systems. We propose a two-layer architecture, where the high-level generates reference trajectories using a linear Model Predictive Controller, and the low-level tracks this reference using a feedback controller. The novelty lies in how we couple these layers, to achieve formal guarantees on recursive feasibility of the MPC problem, and safety of the nonlinear system. Furthermore, using differential flatness, we provide a constructive means to synthesize the multi-rate controller, thereby removing the need to search for suitable Lyapunov or barrier functions, or to approximately linearize/discretize nonlinear dynamics. We show the synthesized controller is a convex optimization problem, making it amenable to real-time implementations. The method is demonstrated experimentally on a ground rover and a quadruped robotic system.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-jacobi reachability: A brief overview and recent advances,” in Conference on Decision and Control.   IEEE, 2017, pp. 2242–2253.
  2. T. Gurriet, A. Singletary, J. Reher, L. Ciarletta, E. Feron, and A. Ames, “Towards a framework for realizable safety critical control through active set invariance,” in International Conference on Cyber-Physical Systems.   IEEE, 2018, pp. 98–106.
  3. A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada, “Control barrier functions: Theory and applications,” in European Control Conference (ECC).   IEEE, 2019, pp. 3420–3431.
  4. L. Wang, A. D. Ames, and M. Egerstedt, “Safe certificate-based maneuvers for teams of quadrotors using differential flatness,” in International Conference on Robotics and Automation (ICRA).   IEEE, 2017, pp. 3293–3298.
  5. S. L. Herbert, M. Chen, S. Han, S. Bansal, J. F. Fisac, and C. J. Tomlin, “Fastrack: A modular framework for fast and guaranteed safe motion planning,” in Conference on Decision and Control.   IEEE, 2017, pp. 1517–1522.
  6. H. Yin, M. Bujarbaruah, M. Arcak, and A. Packard, “Optimization based planner–tracker design for safety guarantees,” in American Control Conference.   IEEE, 2020, pp. 5194–5200.
  7. S. Singh, M. Chen, S. L. Herbert, C. J. Tomlin, and M. Pavone, “Robust tracking with model mismatch for fast and safe planning: an sos optimization approach,” arXiv preprint arXiv:1808.00649, 2018.
  8. Y. Gao, A. Gray, H. E. Tseng, and F. Borrelli, “A tube-based robust nonlinear predictive control approach to semiautonomous ground vehicles,” Vehicle System Dynamics, vol. 52, no. 6, pp. 802–823, 2014.
  9. M. Kögel and R. Findeisen, “Discrete-time robust model predictive control for continuous-time nonlinear systems,” in American Control Conference.   IEEE, 2015, pp. 924–930.
  10. S. Yu, C. Maier, H. Chen, and F. Allgöwer, “Tube mpc scheme based on robust control invariant set with application to lipschitz nonlinear systems,” Systems & Control Letters, vol. 62, no. 2, pp. 194–200, 2013.
  11. J. Köhler, R. Soloperto, M. A. Müller, and F. Allgöwer, “A computationally efficient robust model predictive control framework for uncertain nonlinear systems,” IEEE Transactions on Automatic Control, vol. 66, no. 2, pp. 794–801, 2020.
  12. U. Rosolia and A. D. Ames, “Multi-rate control design leveraging control barrier functions and model predictive control policies,” Control Systems Letters, vol. 5, no. 3, pp. 1007–1012, 2020.
  13. K. Garg, R. K. Cosner, U. Rosolia, A. D. Ames, and D. Panagou, “Multi-rate control design under input constraints via fixed-time barrier functions,” Control Systems Letters, 2021.
  14. C. Fan, K. Miller, and S. Mitra, “Fast and guaranteed safe controller synthesis for nonlinear vehicle models,” in International Conference on Computer Aided Verification.   Springer, 2020, pp. 629–652.
  15. P. Martin, R. M. Murray, and P. Rouchon, “Flat systems, equivalence and trajectory generation,” CDS Technical Report, 2003.
  16. R. M. Murray, M. Rathinam, and W. Sluis, “Differential flatness of mechanical control systems: A catalog of prototype systems,” in ASME international mechanical engineering congress and exposition.   Citeseer, 1995.
  17. M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “Flatness and defect of non-linear systems: introductory theory and examples,” International journal of control, vol. 61, no. 6, pp. 1327–1361, 1995.
  18. D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control for quadrotors,” in International Conference on Robotics and Automation.   IEEE, 2011, pp. 2520–2525.
  19. M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “A lie-backlund approach to equivalence and flatness of nonlinear systems,” IEEE Transactions on automatic control, vol. 44, no. 5, pp. 922–937, 1999.
  20. J. Lévine, “On the equivalence between differential flatness and dynamic feedback linearizability,” IFAC Proceedings Volumes, vol. 40, no. 20, pp. 338–343, 2007.
  21. S. Ramasamy, G. Wu, and K. Sreenath, “Dynamically feasible motion planning through partial differential flatness.” in Robotics: Science and Systems.   Citeseer, 2014.
  22. E. D. Sontag, “Input to state stability: Basic concepts and results,” in Nonlinear and optimal control theory.   Springer, 2008, pp. 163–220.
  23. A. Wu, S. Sadraddini, and R. Tedrake, “R3t: Rapidly-exploring random reachable set tree for optimal kinodynamic planning of nonlinear hybrid systems,” in International Conference on Robotics and Automation.   IEEE, 2020, pp. 4245–4251.
  24. J. Breeden, K. Garg, and D. Panagou, “Control barrier functions in sampled-data systems,” Control Systems Letters, 2021.
  25. A. Singletary, Y. Chen, and A. D. Ames, “Control barrier functions for sampled-data systems with input delays,” in Conference on Decision and Control.   IEEE, 2020, pp. 804–809.
  26. F. Alizadeh and D. Goldfarb, “Second-order cone programming,” Mathematical Programming, vol. 95, no. 1, pp. 3–51, 2003. [Online]. Available: https://doi.org/10.1007/s10107-002-0339-5
  27. A. Laub, “A schur method for solving algebraic riccati equations,” IEEE Transactions on automatic control, vol. 24, no. 6, pp. 913–921, 1979.
  28. J. Buchli, M. Kalakrishnan, M. Mistry, P. Pastor, and S. Schaal, “Compliant quadruped locomotion over rough terrain,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, pp. 814–820.
Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com