Papers
Topics
Authors
Recent
2000 character limit reached

Deep Generative Domain Adaptation with Temporal Attention for Cross-User Activity Recognition (2403.17958v1)

Published 12 Mar 2024 in cs.LG, cs.AI, cs.CV, and cs.HC

Abstract: In Human Activity Recognition (HAR), a predominant assumption is that the data utilized for training and evaluation purposes are drawn from the same distribution. It is also assumed that all data samples are independent and identically distributed ($\displaystyle i.i.d.$). Contrarily, practical implementations often challenge this notion, manifesting data distribution discrepancies, especially in scenarios such as cross-user HAR. Domain adaptation is the promising approach to address these challenges inherent in cross-user HAR tasks. However, a clear gap in domain adaptation techniques is the neglect of the temporal relation embedded within time series data during the phase of aligning data distributions. Addressing this oversight, our research presents the Deep Generative Domain Adaptation with Temporal Attention (DGDATA) method. This novel method uniquely recognises and integrates temporal relations during the domain adaptation process. By synergizing the capabilities of generative models with the Temporal Relation Attention mechanism, our method improves the classification performance in cross-user HAR. A comprehensive evaluation has been conducted on three public sensor-based HAR datasets targeting different scenarios and applications to demonstrate the efficacy of the proposed DGDATA method.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: