Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 61 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Secure Aggregation is Not Private Against Membership Inference Attacks (2403.17775v3)

Published 26 Mar 2024 in cs.LG and cs.CR

Abstract: Secure aggregation (SecAgg) is a commonly-used privacy-enhancing mechanism in federated learning, affording the server access only to the aggregate of model updates while safeguarding the confidentiality of individual updates. Despite widespread claims regarding SecAgg's privacy-preserving capabilities, a formal analysis of its privacy is lacking, making such presumptions unjustified. In this paper, we delve into the privacy implications of SecAgg by treating it as a local differential privacy (LDP) mechanism for each local update. We design a simple attack wherein an adversarial server seeks to discern which update vector a client submitted, out of two possible ones, in a single training round of federated learning under SecAgg. By conducting privacy auditing, we assess the success probability of this attack and quantify the LDP guarantees provided by SecAgg. Our numerical results unveil that, contrary to prevailing claims, SecAgg offers weak privacy against membership inference attacks even in a single training round. Indeed, it is difficult to hide a local update by adding other independent local updates when the updates are of high dimension. Our findings underscore the imperative for additional privacy-enhancing mechanisms, such as noise injection, in federated learning.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: