Deep Learning for Segmentation of Cracks in High-Resolution Images of Steel Bridges (2403.17725v1)
Abstract: Automating the current bridge visual inspection practices using drones and image processing techniques is a prominent way to make these inspections more effective, robust, and less expensive. In this paper, we investigate the development of a novel deep-learning method for the detection of fatigue cracks in high-resolution images of steel bridges. First, we present a novel and challenging dataset comprising of images of cracks in steel bridges. Secondly, we integrate the ConvNext neural network with a previous state-of-the-art encoder-decoder network for crack segmentation. We study and report, the effects of the use of background patches on the network performance when applied to high-resolution images of cracks in steel bridges. Finally, we introduce a loss function that allows the use of more background patches for the training process, which yields a significant reduction in false positive rates.
- doi:https://doi.org/10.1016/j.jtte.2021.12.003.
- doi:https://doi.org/10.1080/15732479.2020.1832539.
- doi:https://doi.org/10.1061/(ASCE)BE.1943-5592.0001507.
- doi:https://doi.org/10.13023/KTC.RR.2016.26.
- doi:https://doi.org/10.3390/app11209757.
- doi:https://doi.org/10.3390/s20143954.
- doi:https://doi.org/10.1109/LRA.2019.2895880.
- doi:https://doi.org/10.3390/drones6110355.
- doi:https://doi.org/10.3390/app12031374.
- doi:https://doi.org/10.3390/buildings12040432.
- doi:10.1080/10298436.2018.1485917.
- doi:https://doi.org/10.1016/j.conbuildmat.2022.129659.
- doi:https://doi.org/10.3390/su14031825.
- doi:https://doi.org/10.1016/j.jtte.2022.11.003.
- doi:https://doi.org/10.3390/s19194251.
- doi:https://doi.org/10.1109/TIP.2018.2878966.
- doi:https://doi.org/10.1109/JSEN.2021.3089718.
- doi:https://doi.org/10.1109/JSEN.2019.2934897.
- doi:https://doi.org/10.1016/j.knosys.2022.108338.
- doi:https://doi.org/10.1109/TITS.2021.3106647.
- doi:https://doi.org/10.1109/TIM.2021.3075022.
- doi:https://doi.org/10.1109/TII.2020.3033170.
- doi:https://doi.org/10.1111/mice.12477.
- doi:https://doi.org/10.1111/mice.12844.
- doi:https://doi.org/10.1016/j.rineng.2023.101267.
- doi:https://doi.org/10.1061/(ASCE)CP.1943-5487.0000883.
- doi:https://doi.org/10.1109/ACCESS.2020.2980086.
- doi:https://doi.org/10.1109/TITS.2020.2990703.
- doi:https://doi.org/10.48550/arXiv.2010.11929.
- doi:https://doi.org/10.48550/arXiv.2304.02643.
- doi:https://doi.org/10.1016/j.autcon.2022.104646.
- doi:https://doi.org/10.1007/s00521-023-08277-7.
- doi:https://doi.org/10.1016/j.autcon.2022.104275.
- doi:https://doi.org/10.48550/arXiv.2105.15203.
- doi:https://doi.org/10.1007/s00138-020-01098-x.
- doi:https://doi.org/10.1007/s10851-023-01147-w.
- doi:https://doi.org/10.1016/j.dsp.2020.102907.
- doi:https://doi.org/10.1177/14759217211006485.
- doi:https://doi.org/10.1177/1475921718764873.
- doi:https://doi.org/10.1007/s13349-021-00537-1.
- doi:https://doi.org/10.21595/mrcm.2021.22032.
- doi:https://doi.org/10.3390/s21124135.
- doi:https://doi.org/10.1016/j.measurement.2022.111805.
- doi:https://doi.org/10.1016/j.jobe.2022.104098.
- doi:https://doi.org/10.1111/mice.12918.
- doi:https://doi.org/10.1007/s11263-021-01515-2.
- doi:https://doi.org/10.1016/j.autcon.2022.104299.
- doi:10.4121/6162a9b6-2a20-4600-8207-e9dcd53a264a.
- doi:https://doi.org/10.1109/5.726791.
- doi:https://doi.org/10.1145/3065386.
- doi:https://doi.org/10.48550/arXiv.1701.04128.
- doi:https://doi.org/10.1109/TITS.2016.2552248.
- doi:https://doi.org/10.48550/arXiv.1409.1556.
- doi:https://doi.org/10.1007/s11263-015-0816-y.
- doi:https://doi.org/10.48550/arXiv.1411.1792.
- doi:https://doi.org/10.1007/s00521-021-06279-x.
- doi:https://doi.org/10.48550/arXiv.1905.11946.
- doi:https://doi.org/10.1177/14759217211053776.
- doi:https://doi.org/10.1023/B:VISI.0000022288.19776.77.
- doi:https://doi.org/10.48550/arXiv.1907.02248.
- doi:https://doi.org/10.1007/s10851-018-0795-z.
- doi:https://doi.org/10.48550/arXiv.1711.05101.
- doi:https://doi.org/10.1090/S0033-569X-10-01172-0.
- doi:https://doi.org/10.1007/s10851-023-01170-x.
- doi:https://doi.org/10.1016/j.autcon.2022.104678.
- doi:https://doi.org/10.1109/TITS.2019.2910595.
- doi:https://doi.org/10.1016/j.neucom.2019.01.036.
- doi:https://doi.org/10.1111/mice.12412.
- doi:https://doi.org/10.1109/TITS.2015.2477675.
- doi:https://doi.org/10.1016/j.conbuildmat.2020.119397.
- doi:https://doi.org/10.1109/ACCESS.2018.2829347.
- doi:https://doi.org/10.3390/s20092557.
- doi:https://doi.org/10.1016/j.neucom.2022.01.051.
- doi:https://doi.org/10.1109/JAS.2023.123447.
- doi:https://doi.org/10.1016/j.autcon.2022.104436.
- doi:https://doi.org/10.1111/mice.12881.
- doi:https://doi.org/10.48550/arXiv.1802.02208.
- doi:https://doi.org/10.3390/coatings10020152.
- doi:https://doi.org/10.3390/s21092902.
- doi:https://doi.org/10.1016/j.engappai.2023.106142.
- doi:https://doi.org/10.1177/14759217221089571.
- doi:https://doi.org/10.13053/cys-23-2-3047.