Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

SGHormer: An Energy-Saving Graph Transformer Driven by Spikes (2403.17656v1)

Published 26 Mar 2024 in cs.NE, cs.AI, and cs.LG

Abstract: Graph Transformers (GTs) with powerful representation learning ability make a huge success in wide range of graph tasks. However, the costs behind outstanding performances of GTs are higher energy consumption and computational overhead. The complex structure and quadratic complexity during attention calculation in vanilla transformer seriously hinder its scalability on the large-scale graph data. Though existing methods have made strides in simplifying combinations among blocks or attention-learning paradigm to improve GTs' efficiency, a series of energy-saving solutions originated from biologically plausible structures are rarely taken into consideration when constructing GT framework. To this end, we propose a new spiking-based graph transformer (SGHormer). It turns full-precision embeddings into sparse and binarized spikes to reduce memory and computational costs. The spiking graph self-attention and spiking rectify blocks in SGHormer explicitly capture global structure information and recover the expressive power of spiking embeddings, respectively. In experiments, SGHormer achieves comparable performances to other full-precision GTs with extremely low computational energy consumption. The results show that SGHomer makes a remarkable progress in the field of low-energy GTs.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.