Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Sanity Checks for Explanation Uncertainty (2403.17212v1)

Published 25 Mar 2024 in cs.LG and cs.AI

Abstract: Explanations for machine learning models can be hard to interpret or be wrong. Combining an explanation method with an uncertainty estimation method produces explanation uncertainty. Evaluating explanation uncertainty is difficult. In this paper we propose sanity checks for uncertainty explanation methods, where a weight and data randomization tests are defined for explanations with uncertainty, allowing for quick tests to combinations of uncertainty and explanation methods. We experimentally show the validity and effectiveness of these tests on the CIFAR10 and California Housing datasets, noting that Ensembles seem to consistently pass both tests with Guided Backpropagation, Integrated Gradients, and LIME explanations.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets