Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Unified CPU-GPU Protocol for GNN Training (2403.17092v1)

Published 25 Mar 2024 in cs.DC

Abstract: Training a Graph Neural Network (GNN) model on large-scale graphs involves a high volume of data communication and computations. While state-of-the-art CPUs and GPUs feature high computing power, the Standard GNN training protocol adopted in existing GNN frameworks cannot efficiently utilize the platform resources. To this end, we propose a novel Unified CPU-GPU protocol that can improve the resource utilization of GNN training on a CPU-GPU platform. The Unified CPU-GPU protocol instantiates multiple GNN training processes in parallel on both the CPU and the GPU. By allocating training processes on the CPU to perform GNN training collaboratively with the GPU, the proposed protocol improves the platform resource utilization and reduces the CPU-GPU data transfer overhead. Since the performance of a CPU and a GPU varies, we develop a novel load balancer that balances the workload dynamically between CPUs and GPUs during runtime. We evaluate our protocol using two representative GNN sampling algorithms, with two widely-used GNN models, on three datasets. Compared with the standard training protocol adopted in the state-of-the-art GNN frameworks, our protocol effectively improves resource utilization and overall training time. On a platform where the GPU moderately outperforms the CPU, our protocol speeds up GNN training by up to 1.41x. On a platform where the GPU significantly outperforms the CPU, our protocol speeds up GNN training by up to 1.26x. Our protocol is open-sourced and can be seamlessly integrated into state-of-the-art GNN frameworks and accelerate GNN training. Our protocol particularly benefits those with limited GPU access due to its high demand.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.