Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Towards Balanced RGB-TSDF Fusion for Consistent Semantic Scene Completion by 3D RGB Feature Completion and a Classwise Entropy Loss Function (2403.16888v2)

Published 25 Mar 2024 in cs.CV

Abstract: Semantic Scene Completion (SSC) aims to jointly infer semantics and occupancies of 3D scenes. Truncated Signed Distance Function (TSDF), a 3D encoding of depth, has been a common input for SSC. Furthermore, RGB-TSDF fusion, seems promising since these two modalities provide color and geometry information, respectively. Nevertheless, RGB-TSDF fusion has been considered nontrivial and commonly-used naive addition will result in inconsistent results. We argue that the inconsistency comes from the sparsity of RGB features upon projecting into 3D space, while TSDF features are dense, leading to imbalanced feature maps when summed up. To address this RGB-TSDF distribution difference, we propose a two-stage network with a 3D RGB feature completion module that completes RGB features with meaningful values for occluded areas. Moreover, we propose an effective classwise entropy loss function to punish inconsistency. Extensive experiments on public datasets verify that our method achieves state-of-the-art performance among methods that do not adopt extra data.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.