Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Camera-aware Label Refinement for Unsupervised Person Re-identification (2403.16450v3)

Published 25 Mar 2024 in cs.CV

Abstract: Unsupervised person re-identification aims to retrieve images of a specified person without identity labels. Many recent unsupervised Re-ID approaches adopt clustering-based methods to measure cross-camera feature similarity to roughly divide images into clusters. They ignore the feature distribution discrepancy induced by camera domain gap, resulting in the unavoidable performance degradation. Camera information is usually available, and the feature distribution in the single camera usually focuses more on the appearance of the individual and has less intra-identity variance. Inspired by the observation, we introduce a \textbf{C}amera-\textbf{A}ware \textbf{L}abel \textbf{R}efinement~(CALR) framework that reduces camera discrepancy by clustering intra-camera similarity. Specifically, we employ intra-camera training to obtain reliable local pseudo labels within each camera, and then refine global labels generated by inter-camera clustering and train the discriminative model using more reliable global pseudo labels in a self-paced manner. Meanwhile, we develop a camera-alignment module to align feature distributions under different cameras, which could help deal with the camera variance further. Extensive experiments validate the superiority of our proposed method over state-of-the-art approaches. The code is accessible at https://github.com/leeBooMla/CALR.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (8)
  1. Mathematics into Type, American Mathematical Society. Online available:
  2. The LATEXCompanion, by F. Mittelbach and M. Goossens
  3. More Math into LaTeX, by G. Grätzer
  4. AMS-StyleGuide-online.pdf, published by the American Mathematical Society
  5. H. Sira-Ramirez. “On the sliding mode control of nonlinear systems,” Systems & Control Letters, vol. 19, pp. 303–312, 1992.
  6. A. Levant. “Exact differentiation of signals with unbounded higher derivatives,” in Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, California, USA, pp. 5585–5590, 2006.
  7. M. Fliess, C. Join, and H. Sira-Ramirez. “Non-linear estimation is easy,” International Journal of Modelling, Identification and Control, vol. 4, no. 1, pp. 12–27, 2008.
  8. R. Ortega, A. Astolfi, G. Bastin, and H. Rodriguez. “Stabilization of food-chain systems using a port-controlled Hamiltonian description,” in Proceedings of the American Control Conference, Chicago, Illinois, USA, pp. 2245–2249, 2000.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub