Papers
Topics
Authors
Recent
2000 character limit reached

Optimization on a Finer Scale: Bounded Local Subgradient Variation Perspective (2403.16317v2)

Published 24 Mar 2024 in math.OC, cs.DS, and cs.LG

Abstract: We initiate the study of nonsmooth optimization problems under bounded local subgradient variation, which postulates bounded difference between (sub)gradients in small local regions around points, in either average or maximum sense. The resulting class of objective functions encapsulates the classes of objective functions traditionally studied in optimization, which are defined based on either Lipschitz continuity of the objective or H\"{o}lder/Lipschitz continuity of its gradient. Further, the defined class contains functions that are neither Lipschitz continuous nor have a H\"{o}lder continuous gradient. When restricted to the traditional classes of optimization problems, the parameters defining the studied classes lead to more fine-grained complexity bounds, recovering traditional oracle complexity bounds in the worst case but generally leading to lower oracle complexity for functions that are not ``worst case.'' Some highlights of our results are that: (i) it is possible to obtain complexity results for both convex and nonconvex problems with the (local or global) Lipschitz constant being replaced by a constant of local subgradient variation and (ii) mean width of the subdifferential set around the optima plays a role in the complexity of nonsmooth optimization, particularly in parallel settings. A consequence of (ii) is that for any error parameter $\epsilon > 0$, parallel oracle complexity of nonsmooth Lipschitz convex optimization is lower than its sequential oracle complexity by a factor $\tilde{\Omega}\big(\frac{1}{\epsilon}\big)$ whenever the objective function is piecewise linear with polynomially many pieces in the input size. This is particularly surprising as existing parallel complexity lower bounds are based on such classes of functions. The seeming contradiction is resolved by considering the region in which the algorithm is allowed to query the objective.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube