Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 149 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

MRSch: Multi-Resource Scheduling for HPC (2403.16298v2)

Published 24 Mar 2024 in cs.DC

Abstract: Emerging workloads in high-performance computing (HPC) are embracing significant changes, such as having diverse resource requirements instead of being CPU-centric. This advancement forces cluster schedulers to consider multiple schedulable resources during decision-making. Existing scheduling studies rely on heuristic or optimization methods, which are limited by an inability to adapt to new scenarios for ensuring long-term scheduling performance. We present an intelligent scheduling agent named MRSch for multi-resource scheduling in HPC that leverages direct future prediction (DFP), an advanced multi-objective reinforcement learning algorithm. While DFP demonstrated outstanding performance in a gaming competition, it has not been previously explored in the context of HPC scheduling. Several key techniques are developed in this study to tackle the challenges involved in multi-resource scheduling. These techniques enable MRSch to learn an appropriate scheduling policy automatically and dynamically adapt its policy in response to workload changes via dynamic resource prioritizing. We compare MRSch with existing scheduling methods through extensive tracebase simulations. Our results demonstrate that MRSch improves scheduling performance by up to 48% compared to the existing scheduling methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: