Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Improving Sequence-to-Sequence Models for Abstractive Text Summarization Using Meta Heuristic Approaches (2403.16247v1)

Published 24 Mar 2024 in cs.CL, cs.LG, and cs.NE

Abstract: As human society transitions into the information age, reduction in our attention span is a contingency, and people who spend time reading lengthy news articles are decreasing rapidly and the need for succinct information is higher than ever before. Therefore, it is essential to provide a quick overview of important news by concisely summarizing the top news article and the most intuitive headline. When humans try to make summaries, they extract the essential information from the source and add useful phrases and grammatical annotations from the original extract. Humans have a unique ability to create abstractions. However, automatic summarization is a complicated problem to solve. The use of sequence-to-sequence (seq2seq) models for neural abstractive text summarization has been ascending as far as prevalence. Numerous innovative strategies have been proposed to develop the current seq2seq models further, permitting them to handle different issues like saliency, familiarity, and human lucidness and create excellent synopses. In this article, we aimed toward enhancing the present architectures and models for abstractive text summarization. The modifications have been aimed at fine-tuning hyper-parameters, attempting specific encoder-decoder combinations. We examined many experiments on an extensively used CNN/DailyMail dataset to check the effectiveness of various models.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.