Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Efficient Reachable Sets on Lie Groups Using Lie Algebra Monotonicity and Tangent Intervals (2403.16214v2)

Published 24 Mar 2024 in eess.SY and cs.SY

Abstract: In this paper, we efficiently compute overapproximating reachable sets for control systems evolving on Lie groups, building off results from monotone systems theory and geometric integration theory. We consider intervals in the tangent space, which describe real sets on the Lie group through the exponential map. A local equivalence between the original system and a system evolving on the Lie algebra allows existing interval reachability techniques to apply in the tangent space. Using interval bounds of the Baker-Campbell-Hausdorff formula, these reachable set estimates are extended to arbitrary time horizons in an efficient Runge-Kutta-Munthe-Kaas integration algorithm. The algorithm is demonstrated through consensus on a torus and attitude control on $SO(3)$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. X. Chen and S. Sankaranarayanan, “Reachability analysis for cyber-physical systems: Are we there yet?” in NASA Formal Methods Symposium.   Springer, 2022, pp. 109–130.
  2. M. Althoff, “An introduction to cora 2015,” in Proc. of the 1st and 2nd Workshop on Applied Verification for Continuous and Hybrid Systems.   EasyChair, December 2015, pp. 120–151. [Online]. Available: https://easychair.org/publications/paper/xMm
  3. S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, and C. Schilling, “Juliareach: a toolbox for set-based reachability,” in Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control, 2019, pp. 39–44.
  4. J. A. dit Sandretto and A. Chapoutot, “Validated explicit and implicit Runge–Kutta methods,” Reliable Computing, vol. 22, no. 1, pp. 79–103, Jul 2016.
  5. P. Crouch, “Spacecraft attitude control and stabilization: Applications of geometric control theory to rigid body models,” IEEE Transactions on Automatic Control, vol. 29, no. 4, pp. 321–331, 1984.
  6. D. Angeli and E. D. Sontag, “Monotone control systems,” IEEE Transactions on automatic control, vol. 48, no. 10, pp. 1684–1698, 2003.
  7. S. Coogan and M. Arcak, “Efficient finite abstraction of mixed monotone systems,” in Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control, 2015, pp. 58–67.
  8. J. D. Lawson, “Ordered manifolds, invariant cone fields, and semigroups.” Forum mathematicum, vol. 1, no. 3, pp. 273–308, 1989. [Online]. Available: http://eudml.org/doc/141617
  9. F. Forni and R. Sepulchre, “Differentially positive systems,” IEEE Transactions on Automatic Control, vol. 61, no. 2, pp. 346–359, 2016.
  10. C. Mostajeran and R. Sepulchre, “Positivity, monotonicity, and consensus on lie groups,” SIAM Journal on Control and Optimization, vol. 56, no. 3, pp. 2436–2461, 2018. [Online]. Available: https://doi.org/10.1137/17M1127168
  11. ——, “Monotonicity on homogeneous spaces,” Mathematics of Control, Signals, and Systems, vol. 30, pp. 1–25, 2018.
  12. A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett, and A. Zanna, “Lie-group methods,” Acta Numerica, vol. 9, p. 215–365, 2000.
  13. E. Hairer, M. Hochbruck, A. Iserles, and C. Lubich, “Geometric numerical integration,” Oberwolfach Reports, vol. 3, no. 1, pp. 805–882, 2006.
  14. H. Munthe-Kaas, “Runge-kutta methods on lie groups,” BIT Numerical Mathematics, vol. 38, pp. 92–111, 1998.
  15. S. Blanes, F. Casas, J.-A. Oteo, and J. Ros, “The magnus expansion and some of its applications,” Physics reports, vol. 470, no. 5-6, pp. 151–238, 2009.
  16. S. Jafarpour, A. Harapanahalli, and S. Coogan, “Efficient interaction-aware interval analysis of neural network feedback loops,” arXiv preprint arXiv:2307.14938, 2023.
  17. J. C. Butcher, “Implicit runge-kutta processes,” Mathematics of computation, vol. 18, no. 85, pp. 50–64, 1964.
  18. A. Harapanahalli, S. Jafarpour, and S. Coogan, “A toolbox for fast interval arithmetic in numpy with an application to formal verification of neural network controlled systems,” 2023.
  19. D. Mittenhuber and K.-H. Neeb, “On the exponential function of an ordered manifold with affine connection,” Mathematische Zeitschrift, vol. 218, no. 1, pp. 1–24, 1995.
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.