Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fusion of Minutia Cylinder Codes and Minutia Patch Embeddings for Latent Fingerprint Recognition (2403.16172v1)

Published 24 Mar 2024 in cs.CV

Abstract: Latent fingerprints are one of the most widely used forensic evidence by law enforcement agencies. However, latent recognition performance is far from the exemplary performance of sensor fingerprint recognition due to deformations and artifacts within these images. In this study, we propose a fusion based local matching approach towards latent fingerprint recognition. Recent latent recognition studies typically relied on local descriptor generation methods, in which either handcrafted minutiae features or deep neural network features are extracted around a minutia of interest, in the latent recognition process. Proposed approach would integrate these handcrafted features with a recently proposed deep neural network embedding features in a multi-stage fusion approach to significantly improve latent recognition results. Effectiveness of the proposed approach has been shown on several public and private data sets. As demonstrated in our experimental results, proposed method improves rank-1 identification accuracy by considerably for real-world datasets when compared to either the single usage of these features or existing state-of-the-art methods in the literature.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.