Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting Energy Budgets in Droplet Dynamics: A Recurrent Neural Network Approach (2403.16144v1)

Published 24 Mar 2024 in physics.flu-dyn and cs.LG

Abstract: Neural networks in fluid mechanics offer an efficient approach for exploring complex flows, including multiphase and free surface flows. The recurrent neural network, particularly the Long Short-Term Memory (LSTM) model, proves attractive for learning mappings from transient inputs to dynamic outputs. This study applies LSTM to predict transient and static outputs for fluid flows under surface tension effects. Specifically, we explore two distinct droplet dynamic scenarios: droplets with diverse initial shapes impacting with solid surfaces, as well as the coalescence of two droplets following collision. Using only dimensionless numbers and geometric time series data from numerical simulations, LSTM predicts the energy budget. The marker-and-cell front-tracking methodology combined with a marker-and-cell finite-difference strategy is adopted for simulating the droplet dynamics. Using a recurrent neural network (RNN) architecture fed with time series data derived from geometrical parameters, as for example droplet diameter variation, our study shows the accuracy of our approach in predicting energy budgets, as for instance the kinetic, dissipation, and surface energy trends, across a range of Reynolds and Weber numbers in droplet dynamic problems. Finally, a two-phase sequential neural network using only geometric data, which is readily available in experimental settings, is employed to predict the energies and then use them to estimate static parameters, such as the Reynolds and Weber numbers. While our methodology has been primarily validated with simulation data, its adaptability to experimental datasets is a promising avenue for future exploration. We hope that our strategy can be useful for diverse applications, spanning from inkjet printing to combustion engines, where the prediction of energy budgets or dissipation energies is crucial.

Citations (1)

Summary

We haven't generated a summary for this paper yet.