Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Geotokens and Geotransformers (2403.15940v1)

Published 23 Mar 2024 in cs.CL and cs.AI

Abstract: In transformer architectures, position encoding primarily provides a sense of sequence for input tokens. While the original transformer paper's method has shown satisfactory results in general language processing tasks, there have been new proposals, such as Rotary Position Embedding (RoPE), for further improvement. This paper presents geotokens, input components for transformers, each linked to a specific geological location. Unlike typical language sequences, for these tokens, the order is not as vital as the geographical coordinates themselves. To represent the relative position in this context and to keep a balance between the real world distance and the distance in the embedding space, we design a position encoding approach drawing from the RoPE structure but tailored for spherical coordinates.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)