Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

On the Fragility of Active Learners for Text Classification (2403.15744v6)

Published 23 Mar 2024 in cs.LG and cs.CL

Abstract: Active learning (AL) techniques optimally utilize a labeling budget by iteratively selecting instances that are most valuable for learning. However, they lack prerequisite checks'', i.e., there are no prescribed criteria to pick an AL algorithm best suited for a dataset. A practitioner must pick a technique they \emph{trust} would beat random sampling, based on prior reported results, and hope that it is resilient to the many variables in their environment: dataset, labeling budget and prediction pipelines. The important questions then are: how often on average, do we expect any AL technique to reliably beat the computationally cheap and easy-to-implement strategy of random sampling? Does it at least make sense to use AL in anAlways ON'' mode in a prediction pipeline, so that while it might not always help, it never under-performs random sampling? How much of a role does the prediction pipeline play in AL's success? We examine these questions in detail for the task of text classification using pre-trained representations, which are ubiquitous today. Our primary contribution here is a rigorous evaluation of AL techniques, old and new, across setups that vary wrt datasets, text representations and classifiers. This unlocks multiple insights around warm-up times, i.e., number of labels before gains from AL are seen, viability of an ``Always ON'' mode and the relative significance of different factors. Additionally, we release a framework for rigorous benchmarking of AL techniques for text classification.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets