Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Privacy-Preserving End-to-End Spoken Language Understanding (2403.15510v1)

Published 22 Mar 2024 in cs.CR, cs.LG, and eess.AS

Abstract: Spoken language understanding (SLU), one of the key enabling technologies for human-computer interaction in IoT devices, provides an easy-to-use user interface. Human speech can contain a lot of user-sensitive information, such as gender, identity, and sensitive content. New types of security and privacy breaches have thus emerged. Users do not want to expose their personal sensitive information to malicious attacks by untrusted third parties. Thus, the SLU system needs to ensure that a potential malicious attacker cannot deduce the sensitive attributes of the users, while it should avoid greatly compromising the SLU accuracy. To address the above challenge, this paper proposes a novel SLU multi-task privacy-preserving model to prevent both the speech recognition (ASR) and identity recognition (IR) attacks. The model uses the hidden layer separation technique so that SLU information is distributed only in a specific portion of the hidden layer, and the other two types of information are removed to obtain a privacy-secure hidden layer. In order to achieve good balance between efficiency and privacy, we introduce a new mechanism of model pre-training, namely joint adversarial training, to further enhance the user privacy. Experiments over two SLU datasets show that the proposed method can reduce the accuracy of both the ASR and IR attacks close to that of a random guess, while leaving the SLU performance largely unaffected.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.