Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Cross-user activity recognition via temporal relation optimal transport (2403.15423v1)

Published 12 Mar 2024 in eess.SP, cs.AI, cs.CV, cs.HC, and cs.LG

Abstract: Current research on human activity recognition (HAR) mainly assumes that training and testing data are drawn from the same distribution to achieve a generalised model, which means all the data are considered to be independent and identically distributed $\displaystyle (i.i.d.) $. In many real-world applications, this assumption does not hold, and collected training and target testing datasets have non-uniform distribution, such as in the case of cross-user HAR. Domain adaptation is a promising approach for cross-user HAR tasks. Existing domain adaptation works based on the assumption that samples in each domain are $\displaystyle i.i.d. $ and do not consider the knowledge of temporal relation hidden in time series data for aligning data distribution. This strong assumption of $\displaystyle i.i.d. $ may not be suitable for time series-related domain adaptation methods because the samples formed by time series segmentation and feature extraction techniques are only coarse approximations to $\displaystyle i.i.d. $ assumption in each domain. In this paper, we propose the temporal relation optimal transport (TROT) method to utilise temporal relation and relax the $\displaystyle i.i.d. $ assumption for the samples in each domain for accurate and efficient knowledge transfer. We obtain the temporal relation representation and implement temporal relation alignment of activities via the Hidden Markov model (HMM) and optimal transport (OT) techniques. Besides, a new regularisation term that preserves temporal relation order information for an improved optimal transport mapping is proposed to enhance the domain adaptation performance. Comprehensive experiments are conducted on three public activity recognition datasets (i.e. OPPT, PAMAP2 and DSADS), demonstrating that TROT outperforms other state-of-the-art methods.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube