Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Coexisting Passive RIS and Active Relay Assisted NOMA Systems (2403.15130v1)

Published 22 Mar 2024 in cs.IT, eess.SP, and math.IT

Abstract: A novel coexisting passive reconfigurable intelligent surface (RIS) and active decode-and-forward (DF) relay assisted non-orthogonal multiple access (NOMA) transmission framework is proposed. In particular, two communication protocols are conceived, namely Hybrid NOMA (H-NOMA) and Full NOMA (F-NOMA). Based on the proposed two protocols, both the sum rate maximization and max-min rate fairness problems are formulated for jointly optimizing the power allocation at the access point and relay as well as the passive beamforming design at the RIS. To tackle the non-convex problems, an alternating optimization (AO) based algorithm is first developed, where the transmit power and the RIS phase-shift are alternatingly optimized by leveraging the two-dimensional search and rank-relaxed difference-of-convex (DC) programming, respectively. Then, a two-layer penalty based joint optimization (JO) algorithm is developed to jointly optimize the resource allocation coefficients within each iteration. Finally, numerical results demonstrate that: i) the proposed coexisting RIS and relay assisted transmission framework is capable of achieving a significant user performance improvement than conventional schemes without RIS or relay; ii) compared with the AO algorithm, the JO algorithm requires less execution time at the cost of a slight performance loss; and iii) the H-NOMA and F-NOMA protocols are generally preferable for ensuring user rate fairness and enhancing user sum rate, respectively.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. A. Huang, L. Guo, X. Mu, and C. Dong, “Integrated passive reconfigurable intelligent surface and active relay assisted noma systems,” in Proc. IEEE Int. Conf. Commun. (ICC), 2022, pp. 3918–3923.
  2. Y. Cai, Z. Qin, F. Cui, G. Y. Li, and J. A. Mccann, “Modulation and multiple access for 5G networks,” IEEE Commun. Surv. Tut., vol. 20, no. 1, pp. 629–646, 2018.
  3. Q. Wu and R. Zhang, “Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network,” IEEE Commun. Mag., vol. 58, no. 1, pp. 106–112, Jan. 2020.
  4. W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems: Applications, trends, technologies, and open research problems,” IEEE Network, vol. 34, no. 3, pp. 134–142, May/June 2020.
  5. M. Di Renzo, A. Zappone, M. Debbah, M.-S. Alouini, C. Yuen, J. De Rosny, and S. Tretyakov, “Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and road ahead,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2450–2525, Nov. 2020.
  6. S. Abeywickrama, R. Zhang, Q. Wu, and C. Yuen, “Intelligent reflecting surface: Practical phase shift model and beamforming optimization,” IEEE Trans. Commun., vol. 68, no. 9, pp. 5849–5863, Sep. 2020.
  7. Y. Liu, Z. Qin, M. Elkashlan, Z. Ding, A. Nallanathan, and L. Hanzo, “Nonorthogonal multiple access for 5G and beyond,” Proc. IEEE, vol. 105, no. 12, pp. 2347–2381, Dec. 2017.
  8. Y. Liu, S. Zhang, X. Mu, Z. Ding, R. Schober, N. Al-Dhahir, E. Hossain, and X. Shen, “Evolution of NOMA toward next generation multiple access (NGMA) for 6G,” IEEE J. Sel. Areas Commun., vol. 40, no. 4, pp. 1037–1071, Apr. 2022.
  9. Z. Ding, Z. Yang, P. Fan, and H. V. Poor, “On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users,” IEEE Signal Process. Lett., vol. 21, no. 12, pp. 1501–1505, Dec. 2014.
  10. Y. Liu, Z. Ding, M. Elkashlan, and H. V. Poor, “Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer,” IEEE J. Sel. Areas Commun., vol. 34, no. 4, pp. 938–953, Apr. 2016.
  11. X. Mu, Y. Liu, L. Guo, J. Lin, and N. Al-Dhahir, “Exploiting intelligent reflecting surfaces in NOMA networks: Joint beamforming optimization,” IEEE Trans. Wireless Commun., vol. 19, no. 10, pp. 6884–6898, Oct. 2020.
  12. C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen, “Reconfigurable intelligent surfaces for energy efficiency in wireless communication,” IEEE Trans. Wireless Commun., vol. 18, no. 8, pp. 4157–4170, Aug. 2019.
  13. W. Wu, Z. Wang, L. Yuan, F. Zhou, F. Lang, B. Wang, and Q. Wu, “IRS-enhanced energy detection for spectrum sensing in cognitive radio networks,” IEEE Wireless Commun. Lett., vol. 10, no. 10, pp. 2254–2258, Oct. 2021.
  14. X. Yu, D. Xu, D. W. K. Ng, and R. Schober, “Power-efficient resource allocation for multiuser MISO systems via intelligent reflecting surfaces,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2020, pp. 1–6.
  15. C. Pan, H. Ren, K. Wang, W. Xu, M. Elkashlan, A. Nallanathan, and L. Hanzo, “Multicell MIMO communications relying on intelligent reflecting surfaces,” IEEE Trans. Wireless Commun., vol. 19, no. 8, pp. 5218–5233, Aug. 2020.
  16. M. Hua, Q. Wu, D. W. K. Ng, J. Zhao, and L. Yang, “Intelligent reflecting surface-aided joint processing coordinated multipoint transmission,” IEEE Trans. Commun., vol. 69, no. 3, pp. 1650–1665, Mar. 2021.
  17. I. Yildirim, F. Kilinc, E. Basar, and G. C. Alexandropoulos, “Hybrid RIS-empowered reflection and decode-and-forward relaying for coverage extension,” IEEE Commun. Lett., vol. 25, no. 5, pp. 1692–1696, May 2021.
  18. B. Zheng and R. Zhang, “IRS meets relaying: Joint resource allocation and passive beamforming optimization,” IEEE Wireless Commun. Lett., vol. 10, no. 9, pp. 2080–2084, Sep. 2021.
  19. Z. Zhang, L. Dai, X. Chen, C. Liu, F. Yang, R. Schober, and H. V. Poor, “Active RIS vs. passive RIS: Which will prevail in 6G?” [Online]. Available:https://arxiv.org/abs/2103.15154.
  20. D. Xu, X. Yu, D. W. Kwan Ng, and R. Schober, “Resource allocation for active IRS-assisted multiuser communication systems,” in Proc. 55th Asilomar Conf. Signals, Syst., Comput., 2021, pp. 113–119.
  21. Z. Ding and H. V. Poor, “A simple design of IRS-NOMA transmission,” IEEE Commun. Lett., vol. 24, no. 5, pp. 1119–1123, May 2020.
  22. B. Zheng, Q. Wu, and R. Zhang, “Intelligent reflecting surface-assisted multiple access with user pairing: NOMA or OMA?” IEEE Commun. Lett., vol. 24, no. 4, pp. 753–757, Apr. 2020.
  23. X. Mu, Y. Liu, L. Guo, J. Lin, and N. Al-Dhahir, “Capacity and optimal resource allocation for IRS-assisted multi-user communication systems,” IEEE Trans. Commun., vol. 69, no. 6, pp. 3771–3786, Jun. 2021.
  24. J. Zhu, Y. Huang, J. Wang, K. Navaie, and Z. Ding, “Power efficient IRS-assisted NOMA,” IEEE Trans. Commun., vol. 69, no. 2, pp. 900–913, Feb. 2021.
  25. G. Chen, Q. Wu, W. Chen, D. W. K. Ng, and L. Hanzo, “IRS-aided wireless powered MEC systems: TDMA or NOMA for computation offloading?” [Online]. Available:https://arxiv.org/abs/2108.06120.
  26. X. Mu, Y. Liu, L. Guo, J. Lin, and R. Schober, “Joint deployment and multiple access design for intelligent reflecting surface assisted networks,” IEEE Trans. Wireless Commun., vol. 20, no. 10, pp. 6648–6664, Oct. 2021.
  27. T. Riihonen, S. Werner, and R. Wichman, “Optimized gain control for single-frequency relaying with loop interference,” IEEE Trans. Wireless Commun., vol. 8, no. 6, pp. 2801–2806, Jun. 2009.
  28. Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming,” IEEE Trans. Wireless Commun., vol. 18, no. 11, pp. 5394–5409, Nov. 2019.
  29. E. Bjornson, O. Ozdogan, and E. G. Larsson, “Intelligent reflecting surface versus decode-and-forward: How large surfaces are needed to beat relaying?” IEEE Wireless Commun. Lett., vol. 9, no. 2, pp. 244–248, Feb. 2020.
  30. Q. Wu, S. Zhang, B. Zheng, C. You, and R. Zhang, “Intelligent reflecting surface-aided wireless communications: A tutorial,” IEEE Trans. Commun., vol. 69, no. 5, pp. 3313–3351, May 2021.
  31. W. Wang, L. Yang, A. Meng, Y. Zhan, and D. W. K. Ng, “Resource allocation for IRS-aided JP-CoMP downlink cellular networks with underlaying D2D communications,” IEEE Trans. Wireless Commun., vol. 21, no. 6, pp. 4295–4309, Jun. 2022.
  32. Y. Yang, B. Zheng, S. Zhang, and R. Zhang, “Intelligent reflecting surface meets ofdm: Protocol design and rate maximization,” IEEE Trans. Commun., vol. 68, no. 7, pp. 4522–4535, Jul. 2020.
  33. H. Liu, X. Yuan, and Y.-J. A. Zhang, “Matrix-calibration-based cascaded channel estimation for reconfigurable intelligent surface assisted multiuser MIMO,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2621–2636, Nov. 2020.
  34. C. Liu, X. Liu, D. W. Kwan Ng, and J. Yuan, “Deep residual network empowered channel estimation for IRS-assisted multi-user communication systems,” in Proc. IEEE Int. Conf. Commun. (ICC), 2021, pp. 1–7.
  35. X. Yue, Z. Qin, Y. Liu, S. Kang, and Y. Chen, “A unified framework for non-orthogonal multiple access,” IEEE Trans. Commun., vol. 66, no. 11, pp. 5346–5359, Nov. 2018.
  36. G. Liu, X. Chen, Z. Ding, Z. Ma, and F. R. Yu, “Hybrid half-duplex/full-duplex cooperative non-orthogonal multiple access with transmit power adaptation,” IEEE Trans. Wireless Commun., vol. 17, no. 1, pp. 506–519, Jan. 2018.
  37. M. Elhattab, M. A. Arfaoui, C. Assi, and A. Ghrayeb, “Reconfigurable intelligent surface enabled full-duplex/half-duplex cooperative non-orthogonal multiple access,” IEEE Trans. Wireless Commun., vol. 21, no. 5, pp. 3349–3364, May 2022.
  38. X. Mu, Y. Liu, L. Guo, J. Lin, and R. Schober, “Simultaneously transmitting and reflecting (STAR) RIS aided wireless communications,” IEEE Trans. Wireless Commun., vol. 21, no. 5, pp. 3083–3098, May 2022.
  39. A. Ben-Tal and M. Zibulevsky, “Penalty/barrier multiplier methods for convex programming problems,” SIAM J. Optim., vol. 7, no. 2, pp. 347–366, May 1997.
  40. H. Kurtaran, A. Eskandarian, D. Marzougui, and N. E. Bedewi, “Crashworthiness design optimization using successive response surface approximations,” Comput. Mech., vol. 29, no. 4-5, p. 409–421, Oct. 2002.
  41. M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1,” [Online]. Available:http://cvxr.com/cvx, 2014.
  42. Q. T. Dinh and M. Diehl, “Local convergence of sequential convex programming for nonconvex optimization,” Recent Advances in Optimization and its Applications in Engineering, Springer, 2010.
  43. Z. Luo, W. Ma, A. M. So, Y. Ye, and S. Zhang, “Semidefinite relaxation of quadratic optimization problems,” IEEE Signal Process. Mag., vol. 27, no. 3, pp. 20–34, May 2010.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Ao Huang (16 papers)
  2. Li Guo (184 papers)
  3. Xidong Mu (109 papers)
  4. Chao Dong (169 papers)
  5. Yuanwei Liu (342 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.