Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Broadening the Scope of Neural Network Potentials through Direct Inclusion of Additional Molecular Attributes (2403.15073v2)

Published 22 Mar 2024 in cs.LG, physics.chem-ph, and physics.comp-ph

Abstract: Most state-of-the-art neural network potentials do not account for molecular attributes other than atomic numbers and positions, which limits its range of applicability by design. In this work, we demonstrate the importance of including additional electronic attributes in neural network potential representations with a minimal architectural change to TensorNet, a state-of-the-art equivariant model based on Cartesian rank-2 tensor representations. By performing experiments on both custom-made and public benchmarking datasets, we show that this modification resolves the input degeneracy issues stemming from the use of atomic numbers and positions alone, while enhancing the model's predictive accuracy across diverse chemical systems with different charge or spin states. This is accomplished without tailored strategies or the inclusion of physics-based energy terms, while maintaining efficiency and accuracy. These findings should furthermore encourage researchers to train and use models incorporating these additional representations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. Kocer, E.; Ko, T. W.; Behler, J. Neural Network Potentials: A Concise Overview of Methods. 2021
  2. Schütt, K. T.; Sauceda, H. E.; Kindermans, P.-J.; Tkatchenko, A.; Müller, K.-R. SchNet – A deep learning architecture for molecules and materials. The Journal of Chemical Physics 2018, 148
  3. Schütt, K. T.; Unke, O. T.; Gastegger, M. Equivariant message passing for the prediction of tensorial properties and molecular spectra. 2021; https://arxiv.org/abs/2102.03150
  4. Thölke, P.; Fabritiis, G. D. Equivariant Transformers for Neural Network based Molecular Potentials. International Conference on Learning Representations. 2022
  5. Batzner, S.; Musaelian, A.; Sun, L.; Geiger, M.; Mailoa, J. P.; Kornbluth, M.; Molinari, N.; Smidt, T. E.; Kozinsky, B. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nature Communications 2022, 13
  6. Musaelian, A.; Batzner, S.; Johansson, A.; Sun, L.; Owen, C. J.; Kornbluth, M.; Kozinsky, B. Learning local equivariant representations for large-scale atomistic dynamics. Nature Communications 2023, 14
  7. Batatia, I.; Kovacs, D. P.; Simm, G. N. C.; Ortner, C.; Csanyi, G. MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields. Advances in Neural Information Processing Systems. 2022
  8. Duval, A.; Mathis, S. V.; Joshi, C. K.; Schmidt, V.; Miret, S.; Malliaros, F. D.; Cohen, T.; Liò, P.; Bengio, Y.; Bronstein, M. A Hitchhiker’s Guide to Geometric GNNs for 3D Atomic Systems. 2023; https://arxiv.org/abs/2312.07511
  9. Unke, O. T.; Chmiela, S.; Gastegger, M.; Schütt, K. T.; Sauceda, H. E.; Müller, K.-R. SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects. Nature Communications 2021, 12
  10. Ko, T. W.; Finkler, J. A.; Goedecker, S.; Behler, J. A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer. Nature Communications 2021, 12
  11. Shaidu, Y.; Pellegrini, F.; Küçükbenli, E.; Lot, R.; de Gironcoli, S. Incorporating long-range electrostatics in neural network potentials via variational charge equilibration from shortsighted ingredients. npj Computational Materials 2024, 10
  12. Gao, A.; Remsing, R. C. Self-consistent determination of long-range electrostatics in neural network potentials. Nature Communications 2022, 13
  13. Simeon, G.; De Fabritiis, G. TensorNet: Cartesian Tensor Representations for Efficient Learning of Molecular Potentials. Advances in Neural Information Processing Systems. 2023; pp 37334–37353
  14. Pelaez, R. P.; Simeon, G.; Galvelis, R.; Mirarchi, A.; Eastman, P.; Doerr, S.; Thölke, P.; Markland, T. E.; De Fabritiis, G. TorchMD-Net 2.0: Fast Neural Network Potentials for Molecular Simulations. 2024; https://arxiv.org/abs/2402.17660
  15. Schwilk, M.; Tahchieva, D. N.; von Lilienfeld, O. A. Large yet bounded: Spin gap ranges in carbenes. 2020; https://arxiv.org/abs/2004.10600
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube