Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comprehensive Evaluation and Insights into the Use of Large Language Models in the Automation of Behavior-Driven Development Acceptance Test Formulation (2403.14965v1)

Published 22 Mar 2024 in cs.SE and cs.AI

Abstract: Behavior-driven development (BDD) is an Agile testing methodology fostering collaboration among developers, QA analysts, and stakeholders. In this manuscript, we propose a novel approach to enhance BDD practices using LLMs to automate acceptance test generation. Our study uses zero and few-shot prompts to evaluate LLMs such as GPT-3.5, GPT-4, Llama-2-13B, and PaLM-2. The paper presents a detailed methodology that includes the dataset, prompt techniques, LLMs, and the evaluation process. The results demonstrate that GPT-3.5 and GPT-4 generate error-free BDD acceptance tests with better performance. The few-shot prompt technique highlights its ability to provide higher accuracy by incorporating examples for in-context learning. Furthermore, the study examines syntax errors, validation accuracy, and comparative analysis of LLMs, revealing their effectiveness in enhancing BDD practices. However, our study acknowledges that there are limitations to the proposed approach. We emphasize that this approach can support collaborative BDD processes and create opportunities for future research into automated BDD acceptance test generation using LLMs.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com