Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Photonic-Electronic Integrated Circuits for High-Performance Computing and AI Accelerators (2403.14806v2)

Published 21 Mar 2024 in cs.ET, physics.app-ph, and physics.optics

Abstract: In recent decades, the demand for computational power has surged, particularly with the rapid expansion of AI. As we navigate the post-Moore's law era, the limitations of traditional electrical digital computing, including process bottlenecks and power consumption issues, are propelling the search for alternative computing paradigms. Among various emerging technologies, integrated photonics stands out as a promising solution for next-generation high-performance computing, thanks to the inherent advantages of light, such as low latency, high bandwidth, and unique multiplexing techniques. Furthermore, the progress in photonic integrated circuits (PICs), which are equipped with abundant photoelectronic components, positions photonic-electronic integrated circuits as a viable solution for high-performance computing and hardware AI accelerators. In this review, we survey recent advancements in both PIC-based digital and analog computing for AI, exploring the principal benefits and obstacles of implementation. Additionally, we propose a comprehensive analysis of photonic AI from the perspectives of hardware implementation, accelerator architecture, and software-hardware co-design. In the end, acknowledging the existing challenges, we underscore potential strategies for overcoming these issues and offer insights into the future drivers for optical computing.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (194)
  1. R. R. Schaller, “Moore’s law: past, present and future,” IEEE spectrum, vol. 34, no. 6, pp. 52–59, 1997.
  2. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015.
  3. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
  4. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 779–788.
  5. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  6. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.
  7. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  8. M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel et al., “End to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316, 2016.
  9. A. Y. Hannun, P. Rajpurkar, M. Haghpanahi, G. H. Tison, C. Bourn, M. P. Turakhia, and A. Y. Ng, “Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network,” Nature Medicine, vol. 25, no. 1, pp. 65–69, 2019.
  10. K. Cao et al., “Large-scale pancreatic cancer detection via non-contrast ct and deep learning,” Nature Medicine, pp. 1–11, 2023.
  11. T. Brown et al., “Language models are few-shot learners,” Advances in neural information processing systems, vol. 33, pp. 1877–1901, 2020.
  12. D. Narayanan et al., “Efficient large-scale language model training on gpu clusters using megatron-lm,” in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2021, pp. 1–15.
  13. F. Fang, N. Zhang, D. Guo, K. Ehmann, B. Cheung, K. Liu, and K. Yamamura, “Towards atomic and close-to-atomic scale manufacturing,” International Journal of Extreme Manufacturing, vol. 1, no. 1, p. 012001, 2019.
  14. R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of ion-implanted mosfet’s with very small physical dimensions,” IEEE Journal of solid-state circuits, vol. 9, no. 5, pp. 256–268, 1974.
  15. M. M. Waldrop, “More than moore,” Nature, vol. 530, no. 7589, pp. 144–148, 2016.
  16. ——, “The chips are down for moore’s law,” Nature News, vol. 530, no. 7589, p. 144, 2016.
  17. D. Braga and G. Horowitz, “High-performance organic field-effect transistors,” Advanced materials, vol. 21, no. 14‐15, pp. 1473–1486, 2009.
  18. V. Podzorov, M. E. Gershenson, C. Kloc, R. Zeis, and E. Bucher, “High-mobility field-effect transistors based on transition metal dichalcogenides,” Applied Physics Letters, vol. 84, no. 17, pp. 3301–3303, 2004.
  19. Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover, “Gpu cluster for high performance computing,” in SC’04: Proceedings of the 2004 ACM/IEEE conference on Supercomputing.   IEEE, 2004, p. 47.
  20. D. Gostimirovic and W. N. Ye, “Ultracompact cmos-compatible optical logic using carrier depletion in microdisk resonators,” Scientific Reports, vol. 7, no. 1, p. 12603, 2017.
  21. E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Communications, vol. 5, no. 1, pp. 1–11, 2014.
  22. K. Xu, “Silicon electro-optic micro-modulator fabricated in standard cmos technology as components for all silicon monolithic integrated optoelectronic systems,” Journal of Micromechanics and Microengineering, vol. 31, no. 5, p. 054001, 2021.
  23. W. Heni et al., “Plasmonic iq modulators with attojoule per bit electrical energy consumption,” Nature Communications, vol. 10, no. 1, p. 1694, 2019.
  24. S. K. Mathew, M. A. Anders, B. Bloechel, T. Nguyen, R. K. Krishnamurthy, and S. Borkar, “A 4-ghz 300-mw 64-bit integer execution alu with dual supply voltages in 90-nm cmos,” IEEE Journal of Solid-State Circuits, vol. 40, no. 1, pp. 44–51, 2005.
  25. Z. Ying et al., “Electronic-photonic arithmetic logic unit for high-speed computing,” Nature Communications, vol. 11, no. 1, p. 2154, 2020.
  26. T. Zhou, X. Lin, J. Wu, Y. Chen, H. Xie, Y. Li, J. Fan, H. Wu, L. Fang, and Q. Dai, “Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit,” Nature Photonics, vol. 15, no. 5, pp. 367–373, 2021.
  27. Y. Chen et al., “All-analog photoelectronic chip for high-speed vision tasks,” Nature, pp. 1–10, 2023.
  28. A. E.-J. Lim et al., “Review of silicon photonics foundry efforts,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 20, no. 4, pp. 405–416, 2013.
  29. Y. Shen et al., “Deep learning with coherent nanophotonic circuits,” Nature Photonics, vol. 11, no. 7, pp. 441–446, 2017.
  30. C. Huang et al., “A silicon photonic–electronic neural network for fibre nonlinearity compensation,” Nature Electronics, vol. 4, no. 11, pp. 837–844, 2021.
  31. X. Meng et al., “Compact optical convolution processing unit based on multimode interference,” Nature Communications, vol. 14, no. 1, p. 3000, 2023.
  32. X. Xu et al., “11 tops photonic convolutional accelerator for optical neural networks,” Nature, vol. 589, no. 7840, pp. 44–51, 2021.
  33. I. Chakraborty, G. Saha, and K. Roy, “Photonic in-memory computing primitive for spiking neural networks using phase-change materials,” Physical Review Applied, vol. 11, no. 1, p. 014063, 2019.
  34. J. Feldmann, N. Youngblood, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “All-optical spiking neurosynaptic networks with self-learning capabilities,” Nature, vol. 569, no. 7755, pp. 208–214, 2019.
  35. C. Kachris and I. Tomkos, “A survey on optical interconnects for data centers,” IEEE Communications Surveys & Tutorials, vol. 14, no. 4, pp. 1021–1036, 2012.
  36. B. J. Shastri, A. N. Tait, T. F. de Lima, W. H. Pernice, H. Bhaskaran, C. D. Wright, and P. R. Prucnal, “Photonics for artificial intelligence and neuromorphic computing,” Nature Photonics, vol. 15, no. 2, pp. 102–114, 2021.
  37. K. Nozaki, S. Matsuo, T. Fujii, K. Takeda, A. Shinya, E. Kuramochi, and M. Notomi, “Femtofarad optoelectronic integration demonstrating energy-saving signal conversion and nonlinear functions,” Nature Photonics, vol. 13, no. 7, pp. 454–459, 2019.
  38. M. Jiang, D. Zhang, T. Lian, L. Wang, D. Niu, C. Chen, Z. Li, and X. Wang, “On-chip integrated optical switch based on polymer waveguides,” Optical Materials, vol. 97, p. 109386, 2019.
  39. C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 ghz bandwidth,” Nature Photonics, vol. 9, no. 8, pp. 511–514, 2015.
  40. Z. Ying, G. Wang, X. Zhang, H.-p. Ho, and Y. Huang, “Ultracompact and broadband polarization beam splitter based on polarization-dependent critical guiding condition,” Optics Letters, vol. 40, no. 9, pp. 2134–2137, 2015.
  41. P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M.-S. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nature Photonics, vol. 8, no. 6, pp. 482–488, 2014.
  42. Y. Ding et al., “Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110 ghz,” Nanophotonics, vol. 9, no. 2, pp. 317–325, 2020.
  43. J. Michel, J. Liu, and L. C. Kimerling, “High-performance ge-on-si photodetectors,” Nature Photonics, vol. 4, no. 8, pp. 527–534, 2010.
  44. Y. Tian et al., “Proof of concept of directed or/nor and and/nand logic circuit consisting of two parallel microring resonators,” Optics Letters, vol. 36, no. 9, pp. 1650–1652, 2011.
  45. L. Zhang et al., “Demonstration of directed xor/xnor logic gates using two cascaded microring resonators,” Optics Letters, vol. 35, no. 10, pp. 1620–1622, 2010.
  46. A. Kumar et al., “Implementation of xor/xnor and and logic gates by using mach–zehnder interferometers,” Optik, vol. 125, no. 19, pp. 5764–5767, 2014.
  47. A. Saharia et al., “A comparative study of various all-optical logic gates,” in Optical and Wireless Technologies: Proceedings of OWT 2018.   Springer, 2020, pp. 429–437.
  48. A. Salmanpour, S. Mohammadnejad, and A. Bahrami, “Photonic crystal logic gates: an overview,” Optical and Quantum Electronics, vol. 47, pp. 2249–2275, 2015.
  49. H. M. Hussein, T. A. Ali, and N. H. Rafat, “A review on the techniques for building all-optical photonic crystal logic gates,” Optics & Laser Technology, vol. 106, pp. 385–397, 2018.
  50. M. Ota et al., “Plasmonic-multimode-interference-based logic circuit with simple phase adjustment,” Scientific Reports, vol. 6, no. 1, p. 24546, 2016.
  51. H. Wei et al., “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Letters, vol. 11, no. 2, pp. 471–475, 2011.
  52. D. Pan, H. Wei, and H. Xu, “Optical interferometric logic gates based on metal slot waveguide network realizing whole fundamental logic operations,” Optics Express, vol. 21, no. 8, pp. 9556–9562, 2013.
  53. Y. Fu et al., “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Letters, vol. 12, no. 11, pp. 5784–5790, 2012.
  54. J. J. Singh, D. Dhawan, and N. Gupta, “All-optical photonic crystal logic gates for optical computing: an extensive review,” Optical Engineering, vol. 59, no. 11, pp. 110 901–110 901, 2020.
  55. Y. Fu, X. Hu, and Q. Gong, “Silicon photonic crystal all-optical logic gates,” Physics Letters A, vol. 377, pp. 329–333, 2013.
  56. E. G. Anagha and R. K. Jeyachitra, “Review on all-optical logic gates: design techniques and classifications–heading toward high-speed optical integrated circuits,” Optical Engineering, vol. 61, no. 6, pp. 060 902–060 902, 2022.
  57. J. Peng, S. Sun, V. K. Narayana, V. J. Sorger, and T. El-Ghazawi, “Integrated nanophotonics architecture for residue number system arithmetic,” arXiv preprint arXiv:1712.00049, 2017.
  58. Z. Ying et al., “Silicon microdisk-based full adders for optical computing,” Optics Letters, vol. 43, no. 5, pp. 983–986, 2018.
  59. L. Yang et al., “Demonstration of a directed optical comparator based on two cascaded microring resonators,” IEEE Photonics Technology Letters, vol. 27, no. 8, pp. 809–812, 2015.
  60. Y. Tian et al., “Demonstration of a directed optical encoder using microring-resonator-based optical switches,” Optics Letters, vol. 36, no. 19, pp. 3795–3797, 2011.
  61. H. Xiao, D. Li, Z. Liu, X. Han, W. Chen, T. Zhao, Y. Tian, and J. Yang, “Experimental realization of a cmos-compatible optical directed priority encoder using cascaded micro-ring resonators,” Nanophotonics, vol. 7, no. 4, pp. 727–733, 2018.
  62. F. Mehdizadeh, M. Soroosh, and H. Alipour-Banaei, “A novel proposal for optical decoder switch based on photonic crystal ring resonators,” Optical and Quantum Electronics, vol. 48, pp. 1–9, 2016.
  63. C. Qiu, W. Gao, R. Soref, J. T. Robinson, and Q. Xu, “Reconfigurable electro-optical directed-logic circuit using carrier-depletion micro-ring resonators,” Optics letters, vol. 39, no. 24, pp. 6767–6770, 2014.
  64. Z. Ying, C. Feng, Z. Zhao, R. Soref, D. Pan, and R. T. Chen, “Integrated multi-operand electro-optic logic gates for optical computing,” Applied Physics Letters, vol. 115, no. 17, 2019.
  65. Z. Fang, R. Chen, J. Zheng, and A. Majumdar, “Non-volatile reconfigurable silicon photonics based on phase-change materials,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 28, no. 3: Hybrid Integration for Silicon Photonics, pp. 1–17, 2021.
  66. Y. Qi, C. Qiu, W. Gao, X. Zhong, and Y. Su, “Silicon reconfigurable electro-optical logic circuit enabled by a single-wavelength light input,” IEEE Photonics Technology Letters, vol. 31, no. 6, pp. 435–438, 2019.
  67. E. Testa, M. Soeken, L. G. Amar, and G. De Micheli, “Logic synthesis for established and emerging computing,” Proceedings of the IEEE, vol. 107, no. 1, pp. 165–184, 2018.
  68. Z. Ying et al., “Automated logic synthesis for electro-optic logic-based integrated optical computing,” Optics Express, vol. 26, no. 21, pp. 28 002–28 012, 2018.
  69. Z. Zhao et al., “Exploiting wavelength division multiplexing for optical logic synthesis,” in 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE).   IEEE, 2019, pp. 1567–1570.
  70. J. Sklansky, “Conditional-sum addition logic,” IRE Transactions on Electronic Computers, vol. 2, pp. 226–231, 1960.
  71. C. Feng, J. Gu, H. Zhu, D. Z. Pan, and R. T. Chen, “Integrated electronic-photonic barrel shifter for high-performance optical computing,” in 2022 Conference on Lasers and Electro-Optics (CLEO).   IEEE, 2022, pp. 1–2.
  72. C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin et al., “Single-chip microprocessor that communicates directly using light,” Nature, vol. 528, no. 7583, pp. 534–538, 2015.
  73. C. Feng, Z. Ying, Z. Zhao, J. Gu, D. Z. Pan, and R. T. Chen, “Wavelength-division-multiplexing (wdm)-based integrated electronic–photonic switching network (epsn) for high-speed data processing and transportation: High-speed optical switching network,” Nanophotonics, vol. 9, no. 15, pp. 4579–4588, 2020.
  74. W. Liu, W. Liu, Y. Ye, Q. Lou, Y. Xie, and L. Jiang, “Holylight: A nanophotonic accelerator for deep learning in data centers,” in 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE).   IEEE, 2019, pp. 1483–1488.
  75. M. Zheng, F. Chen, L. Jiang, and Q. Lou, “Priml: An electro-optical accelerator for private machine learning on encrypted data,” in 2023 24th International Symposium on Quality Electronic Design (ISQED).   IEEE, 2023, pp. 1–7.
  76. F. Zokaee, Q. Lou, N. Youngblood, W. Liu, Y. Xie, and L. Jiang, “Lightbulb: A photonic-nonvolatile-memory-based accelerator for binarized convolutional neural networks,” in 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE).   IEEE, 2020, pp. 1438–1443.
  77. Y. Chen and J. Zhang, “How energy supports our brain to yield consciousness: Insights from neuroimaging based on the neuroenergetics hypothesis,” Frontiers in Systems Neuroscience, vol. 15, p. 648860, 2021.
  78. J. Hsu, “Ibm’s new brain [news],” IEEE Spectrum, vol. 51, no. 10, pp. 17–19, 2014.
  79. S. R. Dubey, S. K. Singh, and B. B. Chaudhuri, “Activation functions in deep learning: A comprehensive survey and benchmark,” Neurocomputing, 2022.
  80. W. Teka, T. M. Marinov, and F. Santamaria, “Neuronal spike timing adaptation described with a fractional leaky integrate-and-fire model,” PLoS Computational Biology, vol. 10, no. 3, p. e1003526, 2014.
  81. C. Feng, J. Gu, H. Zhu, Z. Ying, Z. Zhao, D. Z. Pan, and R. T. Chen, “A compact butterfly-style silicon photonic–electronic neural chip for hardware-efficient deep learning,” Acs Photonics, vol. 9, no. 12, pp. 3906–3916, 2022.
  82. N. C. Harris, Y. Ma, J. Mower, T. Baehr-Jones, D. Englund, M. Hochberg, and C. Galland, “Efficient, compact and low loss thermo-optic phase shifter in silicon,” Optics Express, vol. 22, no. 9, pp. 10 487–10 493, 2014.
  83. S. Manipatruni, K. Preston, L. Chen, and M. Lipson, “Ultra-low voltage, ultra-small mode volume silicon microring modulator,” Optics express, vol. 18, no. 17, pp. 18 235–18 242, 2010.
  84. W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low rf power, 10 gb/s silicon mach-zehnder modulator,” Optics express, vol. 15, no. 25, pp. 17 106–17 113, 2007.
  85. B. R. Moss, C. Sun, M. Georgas, J. Shainline, J. S. Orcutt, J. C. Leu, M. Wade, Y.-H. Chen, K. Nammari, X. Wang et al., “A 1.23 pj/b 2.5 gb/s monolithically integrated optical carrier-injection ring modulator and all-digital driver circuit in commercial 45nm soi,” in 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.   IEEE, 2013, pp. 126–127.
  86. H. Xu, X. Li, X. Xiao, Z. Li, Y. Yu, and J. Yu, “Demonstration and characterization of high-speed silicon depletion-mode mach–zehnder modulators,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 20, no. 4, pp. 23–32, 2013.
  87. J. Wang, C. Qiu, H. Li, W. Ling, L. Li, A. Pang, Z. Sheng et al., “Optimization and demonstration of a large-bandwidth carrier-depletion silicon optical modulator,” Journal of Lightwave Technology, vol. 31, no. 24, pp. 4119–4125, 2013.
  88. W. Zhang, M. Ebert, K. Li, B. Chen, X. Yan, H. Du, M. Banakar, D. T. Tran, C. G. Littlejohns, A. Scofield et al., “Harnessing plasma absorption in silicon mos ring modulators,” Nature Photonics, vol. 17, no. 3, pp. 273–279, 2023.
  89. M. Webster, K. Lakshmikumar, C. Appel, C. Muzio, B. Dama, and K. Shastri, “Low-power mos-capacitor based silicon photonic modulators and cmos drivers,” in 2015 Optical Fiber Communications Conference and Exhibition (OFC).   IEEE, 2015, pp. 1–3.
  90. J.-K. Park, S. Takagi, and M. Takenaka, “Ingaasp mach–zehnder interferometer optical modulator monolithically integrated with ingaas driver mosfet on a iii-v cmos photonics platform,” Optics Express, vol. 26, no. 4, pp. 4842–4852, 2018.
  91. T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated iii–v/si mos capacitor mach–zehnder modulator,” Nature Photonics, vol. 11, no. 8, pp. 482–485, 2017.
  92. C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages,” Nature, vol. 562, no. 7725, pp. 101–104, 2018.
  93. X. Zhang, B. Lee, C.-y. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly linear broadband optical modulator based on electro-optic polymer,” IEEE Photonics Journal, vol. 4, no. 6, pp. 2214–2228, 2012.
  94. X. Zhang, C.-J. Chung, A. Hosseini, H. Subbaraman, J. Luo, A. K. Jen, R. L. Nelson, C. Y. Lee, and R. T. Chen, “High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide,” Journal of Lightwave Technology, vol. 34, no. 12, pp. 2941–2951, 2016.
  95. K. Liu, C. R. Ye, S. Khan, and V. J. Sorger, “Review and perspective on ultrafast wavelength-size electro-optic modulators,” Laser & Photonics Reviews, vol. 9, no. 2, pp. 172–194, 2015.
  96. G. Sinatkas, T. Christopoulos, O. Tsilipakos, and E. E. Kriezis, “Electro-optic modulation in integrated photonics,” Journal of Applied Physics, vol. 130, no. 1, 2021.
  97. W.-C. Hsu, B. Zhou, and A. X. Wang, “Mos capacitor-driven silicon modulators: a mini review and comparative analysis of modulation efficiency and optical loss,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 28, no. 3: Hybrid Integration for Silicon Photonics, pp. 1–11, 2021.
  98. R. Chen, Z. Fang, C. Perez, F. Miller, K. Kumari, A. Saxena, J. Zheng, S. J. Geiger, K. E. Goodson, and A. Majumdar, “Non-volatile electrically programmable integrated photonics with a 5-bit operation,” Nature Communications, vol. 14, no. 1, p. 3465, 2023.
  99. L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated ghz silicon photonic interconnect with micrometer-scale modulators and detectors,” Optics express, vol. 17, no. 17, pp. 15 248–15 256, 2009.
  100. V. Sorianello, M. Midrio, G. Contestabile, I. Asselberghs, J. Van Campenhout, C. Huyghebaert, I. Goykhman, A. Ott, A. Ferrari, and M. Romagnoli, “Graphene–silicon phase modulators with gigahertz bandwidth,” Nature Photonics, vol. 12, no. 1, pp. 40–44, 2018.
  101. M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Physical Review Letters, vol. 73, no. 1, p. 58, 1994.
  102. D. A. Miller, “Self-configuring universal linear optical component,” Photonics Research, vol. 1, no. 1, pp. 1–15, 2013.
  103. S. Dwivedi, A. Ruocco, M. Vanslembrouck, T. Spuesens, P. Bienstman, P. Dumon, T. Van Vaerenbergh, and W. Bogaerts, “Experimental extraction of effective refractive index and thermo-optic coefficients of silicon-on-insulator waveguides using interferometers,” Journal of Lightwave Technology, vol. 33, no. 21, pp. 4471–4477, 2015.
  104. G. Mourgias-Alexandris, M. Moralis-Pegios, A. Tsakyridis, S. Simos, G. Dabos, A. Totovic, N. Passalis et al., “Noise-resilient and high-speed deep learning with coherent silicon photonics,” Nature Communications, vol. 13, no. 1, p. 5572, 2022.
  105. H. Zhang, J. Thompson, M. Gu, X. D. Jiang, H. Cai, P. Y. Liu, Y. Shi, Y. Zhang, M. F. Karim, G. Q. Lo et al., “Efficient on-chip training of optical neural networks using genetic algorithm,” Acs Photonics, vol. 8, no. 6, pp. 1662–1672, 2021.
  106. A. Cem, S. Yan, Y. Ding, D. Zibar, and F. Da Ros, “Data-driven modeling of mach-zehnder interferometer-based optical matrix multipliers,” Journal of Lightwave Technology, 2023.
  107. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photonics Reviews, vol. 6, no. 1, pp. 47–73, 2012.
  108. P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Optics express, vol. 18, no. 11, pp. 10 941–10 946, 2010.
  109. A. N. Tait, T. Ferreira De Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Scientific reports, vol. 7, no. 1, p. 7430, 2017.
  110. A. N. Tait, A. X. Wu, T. Ferreira De Lima, E. Zhou, B. J. Shastri, M. A. Nahmias, and P. R. Prucnal, “Microring weight banks,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 22, no. 6, pp. 312–325, 2016.
  111. S. Ohno, R. Tang, K. Toprasertpong, S. Takagi, and M. Takenaka, “Si microring resonator crossbar array for on-chip inference and training of the optical neural network,” ACS Photonics, vol. 9, no. 8, pp. 2614–2622, 2022.
  112. J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja et al., “Parallel convolutional processing using an integrated photonic tensor core,” Nature, vol. 589, no. 7840, pp. 52–58, 2021.
  113. H. Zhu, J. Gu, H. Wang, R. Tang, Z. Zhang, C. Feng, S. Han, R. T. Chen, and D. Z. Pan, “Lightening-Transformer: A Dynamically-operated Optically-interconnected Photonic Transformer Accelerator,” in IEEE International Symposium on High-Performance Computer Architecture (HPCA), Mar. 2024. [Online]. Available: https://arxiv.org/abs/2305.19533
  114. H. Zhu, J. Zou, H. Zhang, Y. Shi, S. Luo, N. Wang, H. Cai, L. Wan, B. Wang, X. Jiang et al., “Space-efficient optical computing with an integrated chip diffractive neural network,” Nature communications, vol. 13, no. 1, p. 1044, 2022.
  115. Z. Wang, L. Chang, F. Wang, T. Li, and T. Gu, “Integrated photonic metasystem for image classifications at telecommunication wavelength,” Nature communications, vol. 13, no. 1, p. 2131, 2022.
  116. J. Gu, H. Zhu, C. Feng, Z. Jiang, R. T. Chen, and D. Z. Pan, “M3ICRO: Machine learning-enabled compact photonic tensor core based on programmable multi-operand multimode interference,” APL Machine Learning, vol. 2, no. 1, p. 016106, 01 2024. [Online]. Available: https://doi.org/10.1063/5.0170965
  117. C. Feng, J. Gu, H. Zhu, S. Ning, R. Tang, M. Hlaing, J. Midkiff, S. Jain, D. Z. Pan, and R. T. Chen, “Integrated multi-operand optical neurons for scalable and hardware-efficient deep learning,” Nanophotonics, 2024.
  118. J. Gu, C. Feng, H. Zhu, Z. Zhao, Z. Ying, M. Liu, R. T. Chen, and D. Z. Pan, “Squeezelight: A multi-operand ring-based optical neural network with cross-layer scalability,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 42, no. 3, pp. 807–819, 2022.
  119. A. Sludds, S. Bandyopadhyay, Z. Chen, Z. Zhong, J. Cochrane, L. Bernstein, and D. e. a. Bunandar, “Delocalized photonic deep learning on the internet’s edge,” Science, vol. 378, no. 6617, pp. 270–276, 2022.
  120. M. Zhang, D. Yin, N. Gangi, A. Begović, A. Chen, Z. R. Huang, and J. Gu, “Tempo: Efficient time-multiplexed dynamic photonic tensor core for edge ai with compact slow-light electro-optic modulator,” arXiv preprint arXiv:2402.07393, 2024.
  121. E. Farquhar and P. Hasler, “A bio-physically inspired silicon neuron,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 52, no. 3, pp. 477–488, 2005.
  122. Z. Chen, X. Li, X. Zhu, H. Liu, H. Tong, and X. Miao, “Full-analog implementation of activation function based on phase-change memory for artificial neural networks,” IEEE Transactions on Industrial Electronics, 2023.
  123. M. Vatalaro, T. Moposita, S. Strangio, L. Trojman, A. Vladimirescu, M. Lanuzza, and F. Crupi, “A low-voltage, low-power reconfigurable current-mode softmax circuit for analog neural networks,” Electronics, vol. 10, no. 9, p. 1004, 2021.
  124. I. A. Williamson, T. W. Hughes, M. Minkov, B. Bartlett, S. Pai, and S. Fan, “Reprogrammable electro-optic nonlinear activation functions for optical neural networks,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 26, no. 1, pp. 1–12, 2019.
  125. M. M. P. Fard, I. A. Williamson, M. Edwards, K. Liu, S. Pai, B. Bartlett, M. Minkov, T. W. Hughes, S. Fan, and T.-A. Nguyen, “Experimental realization of arbitrary activation functions for optical neural networks,” Optics Express, vol. 28, no. 8, pp. 12 138–12 148, 2020.
  126. F. Ashtiani, A. J. Geers, and F. Aflatouni, “An on-chip photonic deep neural network for image classification,” Nature, vol. 606, no. 7914, pp. 501–506, 2022.
  127. A. N. Tait, T. Ferreira De Lima, M. A. Nahmias, H. B. Miller, H.-T. Peng, B. J. Shastri, and P. R. Prucnal, “Silicon photonic modulator neuron,” Physical Review Applied, vol. 11, no. 6, p. 064043, 2019.
  128. Y. Shi, J. Ren, G. Chen, W. Liu, C. Jin, X. Guo, Y. Yu, and X. Zhang, “Nonlinear germanium-silicon photodiode for activation and monitoring in photonic neuromorphic networks,” Nature Communications, vol. 13, no. 1, p. 6048, 2022.
  129. K. Kravtsov, M. P. Fok, D. Rosenbluth, and P. R. Prucnal, “Ultrafast all-optical implementation of a leaky integrate-and-fire neuron,” Optics express, vol. 19, no. 3, pp. 2133–2147, 2011.
  130. M. A. Nahmias, B. J. Shastri, A. N. Tait, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE journal of selected topics in quantum electronics, vol. 19, no. 5, pp. 1–12, 2013.
  131. Y. Shi, S. Xiang, X. Guo, Y. Zhang, H. Wang, D. Zheng, and Y. e. a. Zhang, “Photonic integrated spiking neuron chip based on a self-pulsating dfb laser with a saturable absorber,” Photonics Research, vol. 11, no. 8, pp. 1382–1389, 2023.
  132. B. Romeira, J. Javaloyes, C. N. Ironside, J. M. Figueiredo, S. Balle, and O. Piro, “Excitability and optical pulse generation in semiconductor lasers driven by resonant tunneling diode photo-detectors,” Optics express, vol. 21, no. 18, pp. 20 931–20 940, 2013.
  133. Z. Zhao, J. Gu, Z. Ying, C. Feng, R. T. Chen, and D. Z. Pan, “Design technology for scalable and robust photonic integrated circuits,” in 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).   IEEE, 2019, pp. 1–7.
  134. J. Gu, Z. Zhao, C. Feng, H. Zhu, R. T. Chen, and D. Z. Pan, “Roq: A noise-aware quantization scheme towards robust optical neural networks with low-bit controls,” in 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE).   IEEE, 2020, pp. 1586–1589.
  135. L. G. Wright, T. Onodera, M. M. Stein, T. Wang, D. T. Schachter, Z. Hu, and P. L. McMahon, “Deep physical neural networks trained with backpropagation,” Nature, vol. 601, no. 7894, pp. 549–555, 2022.
  136. Y. Zhan, H. Zhang, H. Lin, L. K. Chin, H. Cai, M. F. Karim, D. P. Poenar, X. Jiang, M.-W. Mak, L. C. Kwek et al., “Physics-aware analytic-gradient training of photonic neural networks,” Laser & Photonics Reviews, p. 2300445, 2024.
  137. T. W. Hughes, M. Minkov, Y. Shi, and S. Fan, “Training of photonic neural networks through in situ backpropagation and gradient measurement,” Optica, vol. 5, no. 7, pp. 864–871, 2018.
  138. S. Pai, Z. Sun, T. W. Hughes, T. Park, B. Bartlett, I. A. Williamson, M. Minkov, M. Milanizadeh, N. Abebe, F. Morichetti et al., “Experimentally realized in situ backpropagation for deep learning in photonic neural networks,” Science, vol. 380, no. 6643, pp. 398–404, 2023.
  139. G. Mourgias-Alexandris, A. Tsakyridis, N. Passalis, A. Tefas, K. Vyrsokinos, and N. Pleros, “An all-optical neuron with sigmoid activation function,” Optics express, vol. 27, no. 7, pp. 9620–9630, 2019.
  140. A. Jha, C. Huang, and P. R. Prucnal, “Reconfigurable all-optical nonlinear activation functions for neuromorphic photonics,” Optics letters, vol. 45, no. 17, pp. 4819–4822, 2020.
  141. J. Crnjanski, M. Krstić, A. Totović, N. Pleros, and D. Gvozdić, “Adaptive sigmoid-like and prelu activation functions for all-optical perceptron,” Optics Letters, vol. 46, no. 9, pp. 2003–2006, 2021.
  142. J. Xiang, A. Torchy, X. Guo, and Y. Su, “All-optical spiking neuron based on passive microresonator,” Journal of Lightwave Technology, vol. 38, no. 15, pp. 4019–4029, 2020.
  143. H. Zhang, J. Wen, Z. Wu, Q. Wang, H. Yu, Y. Zhang, Y. Pan, L. Yin, C. Wang, and S. Qu, “All-optical neural network nonlinear activation function based on the optical bistability within a micro-ring resonator,” Optics Communications, p. 130374, 2024.
  144. H. Zhou, J. Dong, J. Cheng, W. Dong, C. Huang, Y. Shen, Q. Zhang, M. Gu, C. Qian, H. Chen et al., “Photonic matrix multiplication lights up photonic accelerator and beyond,” Light: Science & Applications, vol. 11, no. 1, p. 30, 2022.
  145. K. Shiflett, D. Wright, A. Karanth, and A. Louri, “Pixel: Photonic neural network accelerator,” in 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA).   IEEE, 2020, pp. 474–487.
  146. K. Shiflett, A. Karanth, R. Bunescu, and A. Louri, “Albireo: Energy-efficient acceleration of convolutional neural networks via silicon photonics,” in 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA).   IEEE, 2021, pp. 860–873.
  147. S. Li, H. Yang, C. W. Wong, V. J. Sorger, and P. Gupta, “Photofourier: A photonic joint transform correlator-based neural network accelerator,” in 2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA).   IEEE, 2023, pp. 15–28.
  148. C. Demirkiran, F. Eris, G. Wang, J. Elmhurst, N. Moore, N. C. Harris, A. Basumallik, V. J. Reddi, A. Joshi, and D. Bunandar, “An electro-photonic system for accelerating deep neural networks,” ACM Journal on Emerging Technologies in Computing Systems, vol. 19, no. 4, pp. 1–31, 2023.
  149. C. Ramey, “Silicon photonics for artificial intelligence acceleration: Hotchips 32,” in 2020 IEEE hot chips 32 symposium (HCS).   IEEE Computer Society, 2020, pp. 1–26.
  150. S. Lam, A. Khaled, S. Bilodeau, B. A. Marquez, P. R. Prucnal, L. Chrostowski, B. J. Shastri, and S. Shekhar, “Dynamic electro-optic analog memory for neuromorphic photonic computing,” arXiv preprint arXiv:2401.16515, 2024.
  151. F. Sunny, A. Mirza, M. Nikdast, and S. Pasricha, “Crosslight: A cross-layer optimized silicon photonic neural network accelerator,” in 2021 58th ACM/IEEE Design Automation Conference (DAC).   IEEE, 2021, pp. 1069–1074.
  152. J. Peng, Y. Alkabani, S. Sun, V. J. Sorger, and T. El-Ghazawi, “Dnnara: A deep neural network accelerator using residue arithmetic and integrated photonics,” in Proceedings of the 49th International Conference on Parallel Processing, 2020, pp. 1–11.
  153. S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E. Shelhamer, “cudnn: Efficient primitives for deep learning,” arXiv preprint arXiv:1410.0759, 2014.
  154. H. Bagherian, S. Skirlo, Y. Shen, H. Meng, V. Ceperic, and M. Soljacic, “On-chip optical convolutional neural networks,” arXiv preprint arXiv:1808.03303, 2018.
  155. Z. Zhu, A. Fardoost, F. G. Vanani, A. B. Klein, G. Li, and S. S. Pang, “Coherent general-purpose photonic matrix processor,” ACS Photonics, 2024.
  156. J. Gu, Z. Zhao, C. Feng, M. Liu, R. T. Chen, and D. Z. Pan, “Towards area-efficient optical neural networks: an fft-based architecture,” in 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC).   IEEE, 2020, pp. 476–481.
  157. J. Gu, Z. Zhao, C. Feng, Z. Ying, M. Liu, R. T. Chen, and D. Z. Pan, “Toward hardware-efficient optical neural networks: Beyond fft architecture via joint learnability,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 40, no. 9, pp. 1796–1809, 2020.
  158. X. Xiao, M. B. On, T. Van Vaerenbergh, D. Liang, R. G. Beausoleil, and S. Yoo, “Large-scale and energy-efficient tensorized optical neural networks on iii–v-on-silicon moscap platform,” Apl Photonics, vol. 6, no. 12, 2021.
  159. I. V. Oseledets, “Tensor-train decomposition,” SIAM Journal on Scientific Computing, vol. 33, no. 5, pp. 2295–2317, 2011.
  160. C. Ding, S. Liao, Y. Wang, Z. Li, N. Liu, Y. Zhuo, C. Wang, X. Qian, Y. Bai, G. Yuan et al., “Circnn: accelerating and compressing deep neural networks using block-circulant weight matrices,” in Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture, 2017, pp. 395–408.
  161. J. Gu, H. Zhu, C. Feng, Z. Jiang, M. Liu, S. Zhang, R. T. Chen, and D. Z. Pan, “Adept: Automatic differentiable design of photonic tensor cores,” in Proceedings of the 59th ACM/IEEE Design Automation Conference, 2022, pp. 937–942.
  162. M. G. Anderson, S.-Y. Ma, T. Wang, L. G. Wright, and P. L. McMahon, “Optical transformers,” arXiv preprint arXiv:2302.10360, 2023.
  163. H. Zhu, K. Zhu, J. Gu, H. Jin, R. T. Chen, J. A. Incorvia, and D. Z. Pan, “Fuse and mix: Macam-enabled analog activation for energy-efficient neural acceleration,” in Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design, 2022, pp. 1–9.
  164. B. Murmann, “ADC Performance Survey 1997-2023,” [Online]. Available: https://github.com/bmurmann/ADC-survey.
  165. S. Shekhar, W. Bogaerts, L. Chrostowski, J. E. Bowers, M. Hochberg, R. Soref, and B. J. Shastri, “Roadmapping the next generation of silicon photonics,” Nature Communications, vol. 15, no. 1, p. 751, 2024.
  166. M. Xu, Y. Zhu, F. Pittalà, J. Tang, M. He, W. C. Ng, J. Wang, Z. Ruan, X. Tang, M. Kuschnerov et al., “Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission,” Optica, vol. 9, no. 1, pp. 61–62, 2022.
  167. Z. Zhou, X. Ou, Y. Fang, E. Alkhazraji, R. Xu, Y. Wan, and J. E. Bowers, “Prospects and applications of on-chip lasers,” Elight, vol. 3, no. 1, pp. 1–25, 2023.
  168. M. Miscuglio and V. J. Sorger, “Photonic tensor cores for machine learning,” Applied Physics Reviews, vol. 7, no. 3, 2020.
  169. M. Kirtas, N. Passalis, A. Oikonomou, M. Moralis-Pegios, G. Giamougiannis, A. Tsakyridis, G. Mourgias-Alexandris, N. Pleros, and A. Tefas, “Mixed-precision quantization-aware training for photonic neural networks,” Neural Computing and Applications, vol. 35, no. 29, pp. 21 361–21 379, 2023.
  170. C. Demirkiran, G. Yang, D. Bunandar, and A. Joshi, “Accelerating dnn training with photonics: A residue number system-based design,” arXiv preprint arXiv:2311.17323, 2023.
  171. M. A. Nahmias, T. F. De Lima, A. N. Tait, H.-T. Peng, B. J. Shastri, and P. R. Prucnal, “Photonic multiply-accumulate operations for neural networks,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 26, no. 1, pp. 1–18, 2019.
  172. J. Choquette, W. Gandhi, O. Giroux, N. Stam, and R. Krashinsky, “Nvidia a100 tensor core gpu: Performance and innovation,” IEEE Micro, vol. 41, no. 2, pp. 29–35, 2021.
  173. H. Zhu, J. Gu, C. Feng, M. Liu, Z. Jiang, R. T. Chen, and D. Z. Pan, “Elight: Enabling efficient photonic in-memory neurocomputing with life enhancement,” in 2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC).   IEEE, 2022, pp. 332–338.
  174. Y. Zhu, M. Liu, L. Xu, L. Wang, X. Xiao, and S. Yu, “Multi-wavelength parallel training and quantization-aware tuning for wdm-based optical convolutional neural networks considering wavelength-relative deviations,” in Proceedings of the 28th Asia and South Pacific Design Automation Conference, 2023, pp. 384–389.
  175. D. Zhang, Y. Zhang, Y. Zhang, Y. Su, J. Yi, P. Wang, R. Wang, G. Luo, X. Zhou, and J. Pan, “Training and inference of optical neural networks with noise and low-bits control,” Applied Sciences, vol. 11, no. 8, p. 3692, 2021.
  176. A. S. Rekhi, B. Zimmer, N. Nedovic, N. Liu, R. Venkatesan, M. Wang, B. Khailany, W. J. Dally, and C. T. Gray, “Analog/mixed-signal hardware error modeling for deep learning inference,” in Proceedings of the 56th Annual Design Automation Conference 2019, 2019, pp. 1–6.
  177. T. Andrulis, J. S. Emer, and V. Sze, “Raella: Reforming the arithmetic for efficient, low-resolution, and low-loss analog pim: No retraining required!” in Proceedings of the 50th Annual International Symposium on Computer Architecture, 2023, pp. 1–16.
  178. M. Y.-S. Fang, S. Manipatruni, C. Wierzynski, A. Khosrowshahi, and M. R. DeWeese, “Design of optical neural networks with component imprecisions,” Optics Express, vol. 27, no. 10, pp. 14 009–14 029, 2019.
  179. Y. Zhu, G. L. Zhang, B. Li, X. Yin, C. Zhuo, H. Gu, T.-Y. Ho, and U. Schlichtmann, “Countering variations and thermal effects for accurate optical neural networks,” in Proceedings of the 39th International Conference on Computer-Aided Design, 2020, pp. 1–7.
  180. J. Gu, Z. Zhao, C. Feng, Z. Ying, R. T. Chen, and D. Z. Pan, “O2nn: Optical neural networks with differential detection-enabled optical operands,” in 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE).   IEEE, 2021, pp. 1062–1067.
  181. A. Mirza, F. Sunny, P. Walsh, K. Hassan, S. Pasricha, and M. Nikdast, “Silicon photonic microring resonators: A comprehensive design-space exploration and optimization under fabrication-process variations,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 41, no. 10, pp. 3359–3372, 2021.
  182. H. Zhou, Y. Zhao, G. Xu, X. Wang, Z. Tan, J. Dong, and X. Zhang, “Chip-scale optical matrix computation for pagerank algorithm,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 26, no. 2, pp. 1–10, 2019.
  183. M. J. Filipovich, Z. Guo, M. Al-Qadasi, B. A. Marquez, H. D. Morison, V. J. Sorger, P. R. Prucnal, S. Shekhar, and B. J. Shastri, “Silicon photonic architecture for training deep neural networks with direct feedback alignment,” Optica, vol. 9, no. 12, pp. 1323–1332, 2022.
  184. S. Bandyopadhyay, A. Sludds, S. Krastanov, R. Hamerly, N. Harris, D. Bunandar, M. Streshinsky, M. Hochberg, and D. Englund, “Single chip photonic deep neural network with accelerated training,” arXiv preprint arXiv:2208.01623, 2022.
  185. J. Gu, Z. Zhao, C. Feng, W. Li, R. T. Chen, and D. Z. Pan, “Flops: Efficient on-chip learning for optical neural networks through stochastic zeroth-order optimization,” in 2020 57th ACM/IEEE Design Automation Conference (DAC).   IEEE, 2020, pp. 1–6.
  186. J. Gu, C. Feng, Z. Zhao, Z. Ying, R. T. Chen, and D. Z. Pan, “Efficient on-chip learning for optical neural networks through power-aware sparse zeroth-order optimization,” in Proceedings of the AAAI conference on artificial intelligence, vol. 35, no. 9, 2021, pp. 7583–7591.
  187. J. Gu, H. Zhu, C. Feng, Z. Jiang, R. Chen, and D. Pan, “L2ight: Enabling on-chip learning for optical neural networks via efficient in-situ subspace optimization,” Advances in Neural Information Processing Systems, vol. 34, pp. 8649–8661, 2021.
  188. A. Nøkland, “Direct feedback alignment provides learning in deep neural networks,” Advances in neural information processing systems, vol. 29, 2016.
  189. J. Launay, I. Poli, F. Boniface, and F. Krzakala, “Direct feedback alignment scales to modern deep learning tasks and architectures,” Advances in neural information processing systems, vol. 33, pp. 9346–9360, 2020.
  190. J. Meng, M. Miscuglio, J. K. George, A. Babakhani, and V. J. Sorger, “Electronic bottleneck suppression in next-generation networks with integrated photonic digital-to-analog converters,” Advanced photonics research, vol. 2, no. 2, p. 2000033, 2021.
  191. V. Stojanović, R. J. Ram, M. Popović, S. Lin, S. Moazeni, M. Wade, C. Sun, L. Alloatti, A. Atabaki, F. Pavanello et al., “Monolithic silicon-photonic platforms in state-of-the-art cmos soi processes,” Optics express, vol. 26, no. 10, pp. 13 106–13 121, 2018.
  192. K. Giewont, K. Nummy, F. A. Anderson, J. Ayala, T. Barwicz, Y. Bian, K. K. Dezfulian, D. M. Gill, T. Houghton, S. Hu et al., “300-mm monolithic silicon photonics foundry technology,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 25, no. 5, pp. 1–11, 2019.
  193. J. Gu, Z. Gao, C. Feng, H. Zhu, R. Chen, D. Boning, and D. Pan, “Neurolight: A physics-agnostic neural operator enabling parametric photonic device simulation,” Advances in Neural Information Processing Systems, vol. 35, pp. 14 623–14 636, 2022.
  194. T. Ferreira De Lima, A. N. Tait, A. Mehrabian, M. A. Nahmias, C. Huang, H.-T. Peng, B. A. Marquez, M. Miscuglio, T. El-Ghazawi, V. J. Sorger et al., “Primer on silicon neuromorphic photonic processors: architecture and compiler,” Nanophotonics, vol. 9, no. 13, pp. 4055–4073, 2020.
Citations (3)

Summary

We haven't generated a summary for this paper yet.