Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Towards Efficient Information Fusion: Concentric Dual Fusion Attention Based Multiple Instance Learning for Whole Slide Images (2403.14346v2)

Published 21 Mar 2024 in cs.CV

Abstract: In the realm of digital pathology, multi-magnification Multiple Instance Learning (multi-mag MIL) has proven effective in leveraging the hierarchical structure of Whole Slide Images (WSIs) to reduce information loss and redundant data. However, current methods fall short in bridging the domain gap between pretrained models and medical imaging, and often fail to account for spatial relationships across different magnifications. Addressing these challenges, we introduce the Concentric Dual Fusion Attention-MIL (CDFA-MIL) framework,which innovatively combines point-to-area feature-colum attention and point-to-point concentric-row attention using concentric patch. This approach is designed to effectively fuse correlated information, enhancing feature representation and providing stronger correlation guidance for WSI analysis. CDFA-MIL distinguishes itself by offering a robust fusion strategy that leads to superior WSI recognition. Its application has demonstrated exceptional performance, significantly surpassing existing MIL methods in accuracy and F1 scores on prominent datasets like Camelyon16 and TCGA-NSCLC. Specifically, CDFA-MIL achieved an average accuracy and F1-score of 93.7\% and 94.1\% respectively on these datasets, marking a notable advancement over traditional MIL approaches.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.