Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Enhancing Historical Image Retrieval with Compositional Cues (2403.14287v1)

Published 21 Mar 2024 in cs.CV, cs.AI, and eess.IV

Abstract: In analyzing vast amounts of digitally stored historical image data, existing content-based retrieval methods often overlook significant non-semantic information, limiting their effectiveness for flexible exploration across varied themes. To broaden the applicability of image retrieval methods for diverse purposes and uncover more general patterns, we innovatively introduce a crucial factor from computational aesthetics, namely image composition, into this topic. By explicitly integrating composition-related information extracted by CNN into the designed retrieval model, our method considers both the image's composition rules and semantic information. Qualitative and quantitative experiments demonstrate that the image retrieval network guided by composition information outperforms those relying solely on content information, facilitating the identification of images in databases closer to the target image in human perception. Please visit https://github.com/linty5/CCBIR to try our codes.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.