Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

How to be fair? A study of label and selection bias (2403.14282v1)

Published 21 Mar 2024 in cs.LG, cs.AI, and cs.CY

Abstract: It is widely accepted that biased data leads to biased and thus potentially unfair models. Therefore, several measures for bias in data and model predictions have been proposed, as well as bias mitigation techniques whose aim is to learn models that are fair by design. Despite the myriad of mitigation techniques developed in the past decade, however, it is still poorly understood under what circumstances which methods work. Recently, Wick et al. showed, with experiments on synthetic data, that there exist situations in which bias mitigation techniques lead to more accurate models when measured on unbiased data. Nevertheless, in the absence of a thorough mathematical analysis, it remains unclear which techniques are effective under what circumstances. We propose to address this problem by establishing relationships between the type of bias and the effectiveness of a mitigation technique, where we categorize the mitigation techniques by the bias measure they optimize. In this paper we illustrate this principle for label and selection bias on the one hand, and demographic parity and ``We're All Equal'' on the other hand. Our theoretical analysis allows to explain the results of Wick et al. and we also show that there are situations where minimizing fairness measures does not result in the fairest possible distribution.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets