Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

DouRN: Improving DouZero by Residual Neural Networks (2403.14102v1)

Published 21 Mar 2024 in cs.AI and cs.LG

Abstract: Deep reinforcement learning has made significant progress in games with imperfect information, but its performance in the card game Doudizhu (Chinese Poker/Fight the Landlord) remains unsatisfactory. Doudizhu is different from conventional games as it involves three players and combines elements of cooperation and confrontation, resulting in a large state and action space. In 2021, a Doudizhu program called DouZero\cite{zha2021douzero} surpassed previous models without prior knowledge by utilizing traditional Monte Carlo methods and multilayer perceptrons. Building on this work, our study incorporates residual networks into the model, explores different architectural designs, and conducts multi-role testing. Our findings demonstrate that this model significantly improves the winning rate within the same training time. Additionally, we introduce a call scoring system to assist the agent in deciding whether to become a landlord. With these enhancements, our model consistently outperforms the existing version of DouZero and even experienced human players. \footnote{The source code is available at \url{https://github.com/Yingchaol/Douzero_Resnet.git.}

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.