Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Learning-based Multi-continuum Model for Multiscale Flow Problems (2403.14084v2)

Published 21 Mar 2024 in math.NA, cs.LG, and cs.NA

Abstract: Multiscale problems can usually be approximated through numerical homogenization by an equation with some effective parameters that can capture the macroscopic behavior of the original system on the coarse grid to speed up the simulation. However, this approach usually assumes scale separation and that the heterogeneity of the solution can be approximated by the solution average in each coarse block. For complex multiscale problems, the computed single effective properties/continuum might be inadequate. In this paper, we propose a novel learning-based multi-continuum model to enrich the homogenized equation and improve the accuracy of the single continuum model for multiscale problems with some given data. Without loss of generalization, we consider a two-continuum case. The first flow equation keeps the information of the original homogenized equation with an additional interaction term. The second continuum is newly introduced, and the effective permeability in the second flow equation is determined by a neural network. The interaction term between the two continua aligns with that used in the Dual-porosity model but with a learnable coefficient determined by another neural network. The new model with neural network terms is then optimized using trusted data. We discuss both direct back-propagation and the adjoint method for the PDE-constraint optimization problem. Our proposed learning-based multi-continuum model can resolve multiple interacted media within each coarse grid block and describe the mass transfer among them, and it has been demonstrated to significantly improve the simulation results through numerical experiments involving both linear and nonlinear flow equations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: