Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

The Bid Picture: Auction-Inspired Multi-player Generative Adversarial Networks Training (2403.13866v1)

Published 20 Mar 2024 in cs.LG and cs.AI

Abstract: This article proposes auction-inspired multi-player generative adversarial networks training, which mitigates the mode collapse problem of GANs. Mode collapse occurs when an over-fitted generator generates a limited range of samples, often concentrating on a small subset of the data distribution. Despite the restricted diversity of generated samples, the discriminator can still be deceived into distinguishing these samples as real samples from the actual distribution. In the absence of external standards, a model cannot recognize its failure during the training phase. We extend the two-player game of generative adversarial networks to the multi-player game. During the training, the values of each model are determined by the bids submitted by other players in an auction-like process.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets