Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Distributed Cooperative Formation Control of Nonlinear Multi-Agent System (UGV) Using Neural Network (2403.13473v1)

Published 20 Mar 2024 in eess.SY and cs.SY

Abstract: The paper presented in this article deals with the issue of distributed cooperative formation of multi-agent systems (MASs). It proposes the use of appropriate neural network control methods to address formation requirements (uncertainties dynamic model). It considers an adaptive leader-follower distributed cooperative formation control based on neural networks (NNs) developed for a class of second-order nonlinear multi-agent systems and neural networks Neural networks are used to compute system data that inputs layer (position, velocity), hidden layers, and output layer. Through collaboration between leader-follower approaches and neural networks with complex systems or complex conditions receive an effective cooperative formation control method. The sufficient conditions for the system stability were derived using Lyapunov stability theory, graph theory, and state space methods. By simulation, the results of this study can be obtained from the main data of the multi-agent system in formation control and verified that the system can process consistency, stability, reliability, and accuracy in cooperative formation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)