Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

TDT-KWS: Fast And Accurate Keyword Spotting Using Token-and-duration Transducer (2403.13332v1)

Published 20 Mar 2024 in eess.AS and cs.SD

Abstract: Designing an efficient keyword spotting (KWS) system that delivers exceptional performance on resource-constrained edge devices has long been a subject of significant attention. Existing KWS search algorithms typically follow a frame-synchronous approach, where search decisions are made repeatedly at each frame despite the fact that most frames are keyword-irrelevant. In this paper, we propose TDT-KWS, which leverages token-and-duration Transducers (TDT) for KWS tasks. We also propose a novel KWS task-specific decoding algorithm for Transducer-based models, which supports highly effective frame-asynchronous keyword search in streaming speech scenarios. With evaluations conducted on both the public Hey Snips and self-constructed LibriKWS-20 datasets, our proposed KWS-decoding algorithm produces more accurate results than conventional ASR decoding algorithms. Additionally, TDT-KWS achieves on-par or better wake word detection performance than both RNN-T and traditional TDT-ASR systems while achieving significant inference speed-up. Furthermore, experiments show that TDT-KWS is more robust to noisy environments compared to RNN-T KWS.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: