Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Depth-guided NeRF Training via Earth Mover's Distance (2403.13206v2)

Published 19 Mar 2024 in cs.CV and cs.AI

Abstract: Neural Radiance Fields (NeRFs) are trained to minimize the rendering loss of predicted viewpoints. However, the photometric loss often does not provide enough information to disambiguate between different possible geometries yielding the same image. Previous work has thus incorporated depth supervision during NeRF training, leveraging dense predictions from pre-trained depth networks as pseudo-ground truth. While these depth priors are assumed to be perfect once filtered for noise, in practice, their accuracy is more challenging to capture. This work proposes a novel approach to uncertainty in depth priors for NeRF supervision. Instead of using custom-trained depth or uncertainty priors, we use off-the-shelf pretrained diffusion models to predict depth and capture uncertainty during the denoising process. Because we know that depth priors are prone to errors, we propose to supervise the ray termination distance distribution with Earth Mover's Distance instead of enforcing the rendered depth to replicate the depth prior exactly through L2-loss. Our depth-guided NeRF outperforms all baselines on standard depth metrics by a large margin while maintaining performance on photometric measures.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com