Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Castor: Competing shapelets for fast and accurate time series classification (2403.13176v1)

Published 19 Mar 2024 in cs.LG and cs.CV

Abstract: Shapelets are discriminative subsequences, originally embedded in shapelet-based decision trees but have since been extended to shapelet-based transformations. We propose Castor, a simple, efficient, and accurate time series classification algorithm that utilizes shapelets to transform time series. The transformation organizes shapelets into groups with varying dilation and allows the shapelets to compete over the time context to construct a diverse feature representation. By organizing the shapelets into groups, we enable the transformation to transition between levels of competition, resulting in methods that more closely resemble distance-based transformations or dictionary-based transformations. We demonstrate, through an extensive empirical investigation, that Castor yields transformations that result in classifiers that are significantly more accurate than several state-of-the-art classifiers. In an extensive ablation study, we examine the effect of choosing hyperparameters and suggest accurate and efficient default values.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. The UEA multivariate time series classification archive, 2018. Bagnall et al. [2017] Bagnall, A., J. Lines, A. Bostrom, J. Large, and E. Keogh. 2017. The great time series classification bake off: A review and experimental evaluation of recent algorithmic advances. Data Min Knowl Discov 31(3): 606–660. 10.1007/s10618-016-0483-9 . Blázquez-García et al. [2022] Blázquez-García, A., A. Conde, U. Mori, and J.A. Lozano. 2022, April. A Review on Outlier/Anomaly Detection in Time Series Data. ACM Computing Surveys 54(3): 1–33. 10.1145/3444690 . Bostrom and Bagnall [2015] Bostrom, A. and A. Bagnall. 2015. Binary shapelet transform for multiclass time series classification, Big Data Analytics and Knowledge Discovery: Lecture Notes in Computer Science, Big Data Analytics and Knowledge Discovery: 17th …, 257–269. Cham: Springer International Publishing. Brophy et al. [2023] Brophy, E., Z. Wang, Q. She, and T. Ward. 2023, October. Generative Adversarial Networks in Time Series: A Systematic Literature Review. ACM Computing Surveys 55(10): 1–31. 10.1145/3559540 . Chauhan and Vig [2015] Chauhan, S. and L. Vig 2015. Anomaly detection in ecg time signals via deep long short-term memory networks. In 2015 IEEE international conference on data science and advanced analytics (DSAA), pp.  1–7. IEEE. Dempster et al. [2020] Dempster, A., F. Petitjean, and G.I. Webb. 2020. ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge Discovery 34(5): 1454–1495. 10.1007/s10618-020-00701-z . Dempster et al. [2021] Dempster, A., D.F. Schmidt, and G.I. Webb 2021. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Bagnall, A., J. Lines, A. Bostrom, J. Large, and E. Keogh. 2017. The great time series classification bake off: A review and experimental evaluation of recent algorithmic advances. Data Min Knowl Discov 31(3): 606–660. 10.1007/s10618-016-0483-9 . Blázquez-García et al. [2022] Blázquez-García, A., A. Conde, U. Mori, and J.A. Lozano. 2022, April. A Review on Outlier/Anomaly Detection in Time Series Data. ACM Computing Surveys 54(3): 1–33. 10.1145/3444690 . Bostrom and Bagnall [2015] Bostrom, A. and A. Bagnall. 2015. Binary shapelet transform for multiclass time series classification, Big Data Analytics and Knowledge Discovery: Lecture Notes in Computer Science, Big Data Analytics and Knowledge Discovery: 17th …, 257–269. Cham: Springer International Publishing. Brophy et al. [2023] Brophy, E., Z. Wang, Q. She, and T. Ward. 2023, October. Generative Adversarial Networks in Time Series: A Systematic Literature Review. ACM Computing Surveys 55(10): 1–31. 10.1145/3559540 . Chauhan and Vig [2015] Chauhan, S. and L. Vig 2015. Anomaly detection in ecg time signals via deep long short-term memory networks. In 2015 IEEE international conference on data science and advanced analytics (DSAA), pp.  1–7. IEEE. Dempster et al. [2020] Dempster, A., F. Petitjean, and G.I. Webb. 2020. ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge Discovery 34(5): 1454–1495. 10.1007/s10618-020-00701-z . Dempster et al. [2021] Dempster, A., D.F. Schmidt, and G.I. Webb 2021. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Blázquez-García, A., A. Conde, U. Mori, and J.A. Lozano. 2022, April. A Review on Outlier/Anomaly Detection in Time Series Data. ACM Computing Surveys 54(3): 1–33. 10.1145/3444690 . Bostrom and Bagnall [2015] Bostrom, A. and A. Bagnall. 2015. Binary shapelet transform for multiclass time series classification, Big Data Analytics and Knowledge Discovery: Lecture Notes in Computer Science, Big Data Analytics and Knowledge Discovery: 17th …, 257–269. Cham: Springer International Publishing. Brophy et al. [2023] Brophy, E., Z. Wang, Q. She, and T. Ward. 2023, October. Generative Adversarial Networks in Time Series: A Systematic Literature Review. ACM Computing Surveys 55(10): 1–31. 10.1145/3559540 . Chauhan and Vig [2015] Chauhan, S. and L. Vig 2015. Anomaly detection in ecg time signals via deep long short-term memory networks. In 2015 IEEE international conference on data science and advanced analytics (DSAA), pp.  1–7. IEEE. Dempster et al. [2020] Dempster, A., F. Petitjean, and G.I. Webb. 2020. ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge Discovery 34(5): 1454–1495. 10.1007/s10618-020-00701-z . Dempster et al. [2021] Dempster, A., D.F. Schmidt, and G.I. Webb 2021. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Bostrom, A. and A. Bagnall. 2015. Binary shapelet transform for multiclass time series classification, Big Data Analytics and Knowledge Discovery: Lecture Notes in Computer Science, Big Data Analytics and Knowledge Discovery: 17th …, 257–269. Cham: Springer International Publishing. Brophy et al. [2023] Brophy, E., Z. Wang, Q. She, and T. Ward. 2023, October. Generative Adversarial Networks in Time Series: A Systematic Literature Review. ACM Computing Surveys 55(10): 1–31. 10.1145/3559540 . Chauhan and Vig [2015] Chauhan, S. and L. Vig 2015. Anomaly detection in ecg time signals via deep long short-term memory networks. In 2015 IEEE international conference on data science and advanced analytics (DSAA), pp.  1–7. IEEE. Dempster et al. [2020] Dempster, A., F. Petitjean, and G.I. Webb. 2020. ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge Discovery 34(5): 1454–1495. 10.1007/s10618-020-00701-z . Dempster et al. [2021] Dempster, A., D.F. Schmidt, and G.I. Webb 2021. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Brophy, E., Z. Wang, Q. She, and T. Ward. 2023, October. Generative Adversarial Networks in Time Series: A Systematic Literature Review. ACM Computing Surveys 55(10): 1–31. 10.1145/3559540 . Chauhan and Vig [2015] Chauhan, S. and L. Vig 2015. Anomaly detection in ecg time signals via deep long short-term memory networks. In 2015 IEEE international conference on data science and advanced analytics (DSAA), pp.  1–7. IEEE. Dempster et al. [2020] Dempster, A., F. Petitjean, and G.I. Webb. 2020. ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge Discovery 34(5): 1454–1495. 10.1007/s10618-020-00701-z . Dempster et al. [2021] Dempster, A., D.F. Schmidt, and G.I. Webb 2021. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Chauhan, S. and L. Vig 2015. Anomaly detection in ecg time signals via deep long short-term memory networks. In 2015 IEEE international conference on data science and advanced analytics (DSAA), pp.  1–7. IEEE. Dempster et al. [2020] Dempster, A., F. Petitjean, and G.I. Webb. 2020. ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge Discovery 34(5): 1454–1495. 10.1007/s10618-020-00701-z . Dempster et al. [2021] Dempster, A., D.F. Schmidt, and G.I. Webb 2021. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Dempster, A., F. Petitjean, and G.I. Webb. 2020. ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge Discovery 34(5): 1454–1495. 10.1007/s10618-020-00701-z . Dempster et al. [2021] Dempster, A., D.F. Schmidt, and G.I. Webb 2021. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Dempster, A., D.F. Schmidt, and G.I. Webb 2021. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  2. The great time series classification bake off: A review and experimental evaluation of recent algorithmic advances. Data Min Knowl Discov 31(3): 606–660. 10.1007/s10618-016-0483-9 . Blázquez-García et al. [2022] Blázquez-García, A., A. Conde, U. Mori, and J.A. Lozano. 2022, April. A Review on Outlier/Anomaly Detection in Time Series Data. ACM Computing Surveys 54(3): 1–33. 10.1145/3444690 . Bostrom and Bagnall [2015] Bostrom, A. and A. Bagnall. 2015. Binary shapelet transform for multiclass time series classification, Big Data Analytics and Knowledge Discovery: Lecture Notes in Computer Science, Big Data Analytics and Knowledge Discovery: 17th …, 257–269. Cham: Springer International Publishing. Brophy et al. [2023] Brophy, E., Z. Wang, Q. She, and T. Ward. 2023, October. Generative Adversarial Networks in Time Series: A Systematic Literature Review. ACM Computing Surveys 55(10): 1–31. 10.1145/3559540 . Chauhan and Vig [2015] Chauhan, S. and L. Vig 2015. Anomaly detection in ecg time signals via deep long short-term memory networks. In 2015 IEEE international conference on data science and advanced analytics (DSAA), pp.  1–7. IEEE. Dempster et al. [2020] Dempster, A., F. Petitjean, and G.I. Webb. 2020. ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge Discovery 34(5): 1454–1495. 10.1007/s10618-020-00701-z . Dempster et al. [2021] Dempster, A., D.F. Schmidt, and G.I. Webb 2021. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Blázquez-García, A., A. Conde, U. Mori, and J.A. Lozano. 2022, April. A Review on Outlier/Anomaly Detection in Time Series Data. ACM Computing Surveys 54(3): 1–33. 10.1145/3444690 . Bostrom and Bagnall [2015] Bostrom, A. and A. Bagnall. 2015. Binary shapelet transform for multiclass time series classification, Big Data Analytics and Knowledge Discovery: Lecture Notes in Computer Science, Big Data Analytics and Knowledge Discovery: 17th …, 257–269. Cham: Springer International Publishing. Brophy et al. [2023] Brophy, E., Z. Wang, Q. She, and T. Ward. 2023, October. Generative Adversarial Networks in Time Series: A Systematic Literature Review. ACM Computing Surveys 55(10): 1–31. 10.1145/3559540 . Chauhan and Vig [2015] Chauhan, S. and L. Vig 2015. Anomaly detection in ecg time signals via deep long short-term memory networks. In 2015 IEEE international conference on data science and advanced analytics (DSAA), pp.  1–7. IEEE. Dempster et al. [2020] Dempster, A., F. Petitjean, and G.I. Webb. 2020. ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge Discovery 34(5): 1454–1495. 10.1007/s10618-020-00701-z . Dempster et al. [2021] Dempster, A., D.F. Schmidt, and G.I. Webb 2021. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Bostrom, A. and A. Bagnall. 2015. Binary shapelet transform for multiclass time series classification, Big Data Analytics and Knowledge Discovery: Lecture Notes in Computer Science, Big Data Analytics and Knowledge Discovery: 17th …, 257–269. Cham: Springer International Publishing. Brophy et al. [2023] Brophy, E., Z. Wang, Q. She, and T. Ward. 2023, October. Generative Adversarial Networks in Time Series: A Systematic Literature Review. ACM Computing Surveys 55(10): 1–31. 10.1145/3559540 . Chauhan and Vig [2015] Chauhan, S. and L. Vig 2015. Anomaly detection in ecg time signals via deep long short-term memory networks. In 2015 IEEE international conference on data science and advanced analytics (DSAA), pp.  1–7. IEEE. Dempster et al. [2020] Dempster, A., F. Petitjean, and G.I. Webb. 2020. ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge Discovery 34(5): 1454–1495. 10.1007/s10618-020-00701-z . Dempster et al. [2021] Dempster, A., D.F. Schmidt, and G.I. Webb 2021. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Brophy, E., Z. Wang, Q. She, and T. Ward. 2023, October. Generative Adversarial Networks in Time Series: A Systematic Literature Review. ACM Computing Surveys 55(10): 1–31. 10.1145/3559540 . Chauhan and Vig [2015] Chauhan, S. and L. Vig 2015. Anomaly detection in ecg time signals via deep long short-term memory networks. In 2015 IEEE international conference on data science and advanced analytics (DSAA), pp.  1–7. IEEE. Dempster et al. [2020] Dempster, A., F. Petitjean, and G.I. Webb. 2020. ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge Discovery 34(5): 1454–1495. 10.1007/s10618-020-00701-z . Dempster et al. [2021] Dempster, A., D.F. Schmidt, and G.I. Webb 2021. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Chauhan, S. and L. Vig 2015. Anomaly detection in ecg time signals via deep long short-term memory networks. In 2015 IEEE international conference on data science and advanced analytics (DSAA), pp.  1–7. IEEE. Dempster et al. [2020] Dempster, A., F. Petitjean, and G.I. Webb. 2020. ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge Discovery 34(5): 1454–1495. 10.1007/s10618-020-00701-z . Dempster et al. [2021] Dempster, A., D.F. Schmidt, and G.I. Webb 2021. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Dempster, A., F. Petitjean, and G.I. Webb. 2020. ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge Discovery 34(5): 1454–1495. 10.1007/s10618-020-00701-z . Dempster et al. [2021] Dempster, A., D.F. Schmidt, and G.I. Webb 2021. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Dempster, A., D.F. Schmidt, and G.I. Webb 2021. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  3. A Review on Outlier/Anomaly Detection in Time Series Data. ACM Computing Surveys 54(3): 1–33. 10.1145/3444690 . Bostrom and Bagnall [2015] Bostrom, A. and A. Bagnall. 2015. Binary shapelet transform for multiclass time series classification, Big Data Analytics and Knowledge Discovery: Lecture Notes in Computer Science, Big Data Analytics and Knowledge Discovery: 17th …, 257–269. Cham: Springer International Publishing. Brophy et al. [2023] Brophy, E., Z. Wang, Q. She, and T. Ward. 2023, October. Generative Adversarial Networks in Time Series: A Systematic Literature Review. ACM Computing Surveys 55(10): 1–31. 10.1145/3559540 . Chauhan and Vig [2015] Chauhan, S. and L. Vig 2015. Anomaly detection in ecg time signals via deep long short-term memory networks. In 2015 IEEE international conference on data science and advanced analytics (DSAA), pp.  1–7. IEEE. Dempster et al. [2020] Dempster, A., F. Petitjean, and G.I. Webb. 2020. ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge Discovery 34(5): 1454–1495. 10.1007/s10618-020-00701-z . Dempster et al. [2021] Dempster, A., D.F. Schmidt, and G.I. Webb 2021. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Bostrom, A. and A. Bagnall. 2015. Binary shapelet transform for multiclass time series classification, Big Data Analytics and Knowledge Discovery: Lecture Notes in Computer Science, Big Data Analytics and Knowledge Discovery: 17th …, 257–269. Cham: Springer International Publishing. Brophy et al. [2023] Brophy, E., Z. Wang, Q. She, and T. Ward. 2023, October. Generative Adversarial Networks in Time Series: A Systematic Literature Review. ACM Computing Surveys 55(10): 1–31. 10.1145/3559540 . Chauhan and Vig [2015] Chauhan, S. and L. Vig 2015. Anomaly detection in ecg time signals via deep long short-term memory networks. In 2015 IEEE international conference on data science and advanced analytics (DSAA), pp.  1–7. IEEE. Dempster et al. [2020] Dempster, A., F. Petitjean, and G.I. Webb. 2020. ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge Discovery 34(5): 1454–1495. 10.1007/s10618-020-00701-z . Dempster et al. [2021] Dempster, A., D.F. Schmidt, and G.I. Webb 2021. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Brophy, E., Z. Wang, Q. She, and T. Ward. 2023, October. Generative Adversarial Networks in Time Series: A Systematic Literature Review. ACM Computing Surveys 55(10): 1–31. 10.1145/3559540 . Chauhan and Vig [2015] Chauhan, S. and L. Vig 2015. Anomaly detection in ecg time signals via deep long short-term memory networks. In 2015 IEEE international conference on data science and advanced analytics (DSAA), pp.  1–7. IEEE. Dempster et al. [2020] Dempster, A., F. Petitjean, and G.I. Webb. 2020. ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge Discovery 34(5): 1454–1495. 10.1007/s10618-020-00701-z . Dempster et al. [2021] Dempster, A., D.F. Schmidt, and G.I. Webb 2021. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Chauhan, S. and L. Vig 2015. Anomaly detection in ecg time signals via deep long short-term memory networks. In 2015 IEEE international conference on data science and advanced analytics (DSAA), pp.  1–7. IEEE. Dempster et al. [2020] Dempster, A., F. Petitjean, and G.I. Webb. 2020. ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge Discovery 34(5): 1454–1495. 10.1007/s10618-020-00701-z . Dempster et al. [2021] Dempster, A., D.F. Schmidt, and G.I. Webb 2021. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Dempster, A., F. Petitjean, and G.I. Webb. 2020. ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge Discovery 34(5): 1454–1495. 10.1007/s10618-020-00701-z . Dempster et al. [2021] Dempster, A., D.F. Schmidt, and G.I. Webb 2021. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Dempster, A., D.F. Schmidt, and G.I. Webb 2021. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  4. Binary shapelet transform for multiclass time series classification, Big Data Analytics and Knowledge Discovery: Lecture Notes in Computer Science, Big Data Analytics and Knowledge Discovery: 17th …, 257–269. Cham: Springer International Publishing. Brophy et al. [2023] Brophy, E., Z. Wang, Q. She, and T. Ward. 2023, October. Generative Adversarial Networks in Time Series: A Systematic Literature Review. ACM Computing Surveys 55(10): 1–31. 10.1145/3559540 . Chauhan and Vig [2015] Chauhan, S. and L. Vig 2015. Anomaly detection in ecg time signals via deep long short-term memory networks. In 2015 IEEE international conference on data science and advanced analytics (DSAA), pp.  1–7. IEEE. Dempster et al. [2020] Dempster, A., F. Petitjean, and G.I. Webb. 2020. ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge Discovery 34(5): 1454–1495. 10.1007/s10618-020-00701-z . Dempster et al. [2021] Dempster, A., D.F. Schmidt, and G.I. Webb 2021. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Brophy, E., Z. Wang, Q. She, and T. Ward. 2023, October. Generative Adversarial Networks in Time Series: A Systematic Literature Review. ACM Computing Surveys 55(10): 1–31. 10.1145/3559540 . Chauhan and Vig [2015] Chauhan, S. and L. Vig 2015. Anomaly detection in ecg time signals via deep long short-term memory networks. In 2015 IEEE international conference on data science and advanced analytics (DSAA), pp.  1–7. IEEE. Dempster et al. [2020] Dempster, A., F. Petitjean, and G.I. Webb. 2020. ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge Discovery 34(5): 1454–1495. 10.1007/s10618-020-00701-z . Dempster et al. [2021] Dempster, A., D.F. Schmidt, and G.I. Webb 2021. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Chauhan, S. and L. Vig 2015. Anomaly detection in ecg time signals via deep long short-term memory networks. In 2015 IEEE international conference on data science and advanced analytics (DSAA), pp.  1–7. IEEE. Dempster et al. [2020] Dempster, A., F. Petitjean, and G.I. Webb. 2020. ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge Discovery 34(5): 1454–1495. 10.1007/s10618-020-00701-z . Dempster et al. [2021] Dempster, A., D.F. Schmidt, and G.I. Webb 2021. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Dempster, A., F. Petitjean, and G.I. Webb. 2020. ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge Discovery 34(5): 1454–1495. 10.1007/s10618-020-00701-z . Dempster et al. [2021] Dempster, A., D.F. Schmidt, and G.I. Webb 2021. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Dempster, A., D.F. Schmidt, and G.I. Webb 2021. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  5. Generative Adversarial Networks in Time Series: A Systematic Literature Review. ACM Computing Surveys 55(10): 1–31. 10.1145/3559540 . Chauhan and Vig [2015] Chauhan, S. and L. Vig 2015. Anomaly detection in ecg time signals via deep long short-term memory networks. In 2015 IEEE international conference on data science and advanced analytics (DSAA), pp.  1–7. IEEE. Dempster et al. [2020] Dempster, A., F. Petitjean, and G.I. Webb. 2020. ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge Discovery 34(5): 1454–1495. 10.1007/s10618-020-00701-z . Dempster et al. [2021] Dempster, A., D.F. Schmidt, and G.I. Webb 2021. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Chauhan, S. and L. Vig 2015. Anomaly detection in ecg time signals via deep long short-term memory networks. In 2015 IEEE international conference on data science and advanced analytics (DSAA), pp.  1–7. IEEE. Dempster et al. [2020] Dempster, A., F. Petitjean, and G.I. Webb. 2020. ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge Discovery 34(5): 1454–1495. 10.1007/s10618-020-00701-z . Dempster et al. [2021] Dempster, A., D.F. Schmidt, and G.I. Webb 2021. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Dempster, A., F. Petitjean, and G.I. Webb. 2020. ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge Discovery 34(5): 1454–1495. 10.1007/s10618-020-00701-z . Dempster et al. [2021] Dempster, A., D.F. Schmidt, and G.I. Webb 2021. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Dempster, A., D.F. Schmidt, and G.I. Webb 2021. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  6. Anomaly detection in ecg time signals via deep long short-term memory networks. In 2015 IEEE international conference on data science and advanced analytics (DSAA), pp.  1–7. IEEE. Dempster et al. [2020] Dempster, A., F. Petitjean, and G.I. Webb. 2020. ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge Discovery 34(5): 1454–1495. 10.1007/s10618-020-00701-z . Dempster et al. [2021] Dempster, A., D.F. Schmidt, and G.I. Webb 2021. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Dempster, A., F. Petitjean, and G.I. Webb. 2020. ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge Discovery 34(5): 1454–1495. 10.1007/s10618-020-00701-z . Dempster et al. [2021] Dempster, A., D.F. Schmidt, and G.I. Webb 2021. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Dempster, A., D.F. Schmidt, and G.I. Webb 2021. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  7. ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge Discovery 34(5): 1454–1495. 10.1007/s10618-020-00701-z . Dempster et al. [2021] Dempster, A., D.F. Schmidt, and G.I. Webb 2021. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Dempster, A., D.F. Schmidt, and G.I. Webb 2021. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  8. MiniRocket. A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. Dempster et al. [2023] Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Dempster, A., D.F. Schmidt, and G.I. Webb. 2023. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  9. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery 37(5): 1779–1805. 10.1007/s10618-023-00939-3 . Gordon et al. [1984] Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Gordon, A.D., L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984, September. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  10. Classification and Regression Trees. Biometrics 40(3): 874. 10.2307/2530946. 2530946 . Grabocka et al. [2014] Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Grabocka, J., N. Schilling, M. Wistuba, and L. Schmidt-Thieme 2014. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  11. Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume et al. [2022] Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Guillaume, A., C. Vrain, and W. Elloumi 2022. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  12. Random dilated shapelet transform: A new approach for time series shapelets. In International Conference on Pattern Recognition and Artificial Intelligence, pp.  653–664. Springer. He et al. [2016] He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. He, K., X. Zhang, S. Ren, and J. Sun 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  13. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hills et al. [2014] Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Hills, J., J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  14. Classification of time series by shapelet transformation. Data Mining and Knowledge Discovery 28(4): 851–881. 10.1007/s10618-013-0322-1 . Holder et al. [2024] Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Holder, C., M. Middlehurst, and A. Bagnall. 2024, February. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  15. A review and evaluation of elastic distance functions for time series clustering. Knowledge and Information Systems 66(2): 765–809. 10.1007/s10115-023-01952-0 . Ismail Fawaz et al. [2020] Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ismail Fawaz, H., B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, and F. Petitjean. 2020. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  16. InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery 34(6): 1936–1962. 10.1007/s10618-020-00710-y . Karlsson et al. [2016] Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Karlsson, I., P. Papapetrou, and H. Boström. 2016, September. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  17. Generalized random shapelet forests. Data Mining and Knowledge Discovery 30(5): 1053–1085. 10.1007/s10618-016-0473-y . Le Nguyen et al. [2019] Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Le Nguyen, T., S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim. 2019, July. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  18. Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations. Data Mining and Knowledge Discovery 33. 10.1007/s10618-019-00633-3 . Lee et al. [2023] Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lee, Z., T. Lindgren, and P. Papapetrou. 2023. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  19. Z-time: Efficient and effective interpretable multivariate time series classification. Data Mining and Knowledge Discovery. 10.1007/s10618-023-00969-x . Lim and Zohren [2021] Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lim, B. and S. Zohren. 2021, April. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  20. Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2194): 20200209. 10.1098/rsta.2020.0209 . Lines et al. [2012] Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Lines, J., L.M. Davis, J. Hills, and A. Bagnall 2012. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  21. A shapelet transform for time series classification. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst et al. [2020] Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, and A. Bagnall 2020. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  22. The canonical interval forest (cif) classifier for time series classification. In 2020 IEEE international conference on big data (big data), pp.  188–195. IEEE. Middlehurst et al. [2021] Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, G. Cawley, and A. Bagnall 2021. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  23. The temporal dictionary ensemble (TDE) classifier for time series classification. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, pp.  660–676. Springer International Publishing. Middlehurst et al. [2021] Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Middlehurst, M., J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall. 2021. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  24. HIVE-COTE 2.0: A new meta ensemble for time series classification. Machine Learning 110(11-12): 3211–3243. 10.1007/s10994-021-06057-9 . Nguyen and Ifrim [2023] Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Nguyen, T.L. and G. Ifrim 2023. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  25. Fast Time Series Classification with Random Symbolic Subsequences. In T. Guyet, G. Ifrim, S. Malinowski, A. Bagnall, P. Shafer, and V. Lemaire (Eds.), Advanced Analytics and Learning on Temporal Data, Volume 13812, Cham, pp.  50–65. Springer International Publishing. O’Shea and Nash [2015] O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. O’Shea, K. and R. Nash. 2015, December. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  26. An Introduction to Convolutional Neural Networks. Pedregosa et al. [2011] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  27. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12: 2825–2830 . Petitjean et al. [2016] Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Petitjean, F., G. Forestier, G.I. Webb, A.E. Nicholson, Y. Chen, and E. Keogh. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  28. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowledge and Information Systems 47: 1–26 . Rakthanmanon and Keogh [2013] Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Rakthanmanon, T. and E. Keogh 2013. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  29. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Samsten [2024] Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Samsten, I. 2024, January. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  30. Isaksamsten/wildboar: Wildboar. Zenodo. Schäfer [2015] Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  31. Schäfer, P. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery 29(6): 1505–1530. 10.1007/s10618-014-0377-7 . Schäfer and Leser [2023] Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Schäfer, P. and U. Leser. 2023. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  32. WEASEL 2.0–a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194. arxiv:2301.10194 . Sim et al. [2022] Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Sim, K.H., K.Y. Sim, and V. Raman. 2022. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  33. A review of scalable time series pattern recognition. International Journal of Business Intelligence and Data Mining 21(3): 373. 10.1504/IJBIDM.2022.125217 . Tan et al. [2022] Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Tan, C.W., A. Dempster, C. Bergmeir, and G.I. Webb. 2022. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  34. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery 36(5): 1623–1646. 10.1007/s10618-022-00844-1 . van den Oord et al. [2016] van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  35. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. 10.48550/arXiv.1609.03499 Focus to learn more. arxiv:1609.03499 . Wistuba et al. [2015] Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Wistuba, M., J. Grabocka, and L. Schmidt-Thieme. 2015. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  36. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018. arxiv:1503.05018 . Ye and Keogh [2009] Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. Ye, L. and E. Keogh 2009. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
  37. Time series shapelets. a new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Isak Samsten (4 papers)
  2. Zed Lee (3 papers)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets